Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices.However,the application of graphene fillers is limited by their restr...Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices.However,the application of graphene fillers is limited by their restricted mass production and the low concentration of their suspensions.In this study,a highly concentrated and conductive ink based on defect-free graphene was developed by a scalable fluid dynamics process.A high shear exfoliation and mixing process enabled the production of graphene at a high concentration of 47.5 mg mL^(−1)for graphene ink.The screen-printed graphene conductor exhibits a high electrical conductivity of 1.49×10^(4)S m^(−1)and maintains high conductivity under mechanical bending,compressing,and fatigue tests.Based on the as-prepared graphene ink,a printed electrochemical sodium ion(Na^(+))sensor that shows high potentiometric sensing performance was fabricated.Further,by integrating a wireless electronic module,a prototype Na^(+)-sensing watch is demonstrated for the real-time monitoring of the sodium ion concentration in human sweat during the indoor exercise of a volunteer.The scalable and efficient procedure for the preparation of graphene ink presented in this work is very promising for the low-cost,reproducible,and large-scale printing of flexible and wearable electronic devices.展开更多
This paper presents the studying results of the sodium ion sensor device based on the SnO_2/ITO glass structure in the detection of rinsing solution for contact lenses.The selective membrane contains poly (vinyl chlor...This paper presents the studying results of the sodium ion sensor device based on the SnO_2/ITO glass structure in the detection of rinsing solution for contact lenses.The selective membrane contains poly (vinyl chloride) (PVC),bis (2-ethylhexyl) sebacate (DOS),(12-crown-4) methylmalonate (B12C4),and sodium tetrakis (4-fluoropbenyl) borate dehydrate (NaTFBD). The final weight ratios are PVC:DOS:B12C4:NaTFBD=33:66:2:2.In this condition,the sensor has performances with linear sensitivity,short response time,good repeatability and selectivity.The sensor was used to measure the rinsing solution for the contact lenses.Because the experimental results show close to the accurate value for four commercial products,this sensor can preliminary be used in detecting the rinsing solution for the contact lenses.Using this structure and sodium-sensing membrane to construct the sodium sensor is proven successfully in this application.展开更多
In order to examine the hydronium ion (proton)-releasing functions in cells, [pH]out (extracellular pH) was measured using an ion image sensor composed of a 2D (two-dimensional) array of potential sensitive pixe...In order to examine the hydronium ion (proton)-releasing functions in cells, [pH]out (extracellular pH) was measured using an ion image sensor composed of a 2D (two-dimensional) array of potential sensitive pixels. Using gastric tissues prepared from the stomach, pH distribution was observed during the histamine stimulation. The 2D distribution of [pH]out in the gastric tissues showed clear differences between the mucosal sides and the serous side. Even before the histamine stimulation, the mucosal side of the gastric mucosa showed a slightly lower pH than that of serous side. In the mucosal side, [pH]out decreased after the onset of the stimulation. The ion image sensor was capable of visualizing [pH]out in the gastric tissues. The present chemical-sensing technique realized a label-free microscopic assessment of the 2D distributions of biologically interesting substances, and consequently, [pH] out imaging via chemical microscopy has a future potential in medical fields for endoscopic analysis of gastric ulcers.展开更多
Benzil bis(carbohydrazone)(BBC) is prepared and explored as new N N Schiff's base, which plays the role of an excellent ion carrier in the construction of a Cd(II) ion membrane sensor. The tris(2-ethylhexyl) phosp...Benzil bis(carbohydrazone)(BBC) is prepared and explored as new N N Schiff's base, which plays the role of an excellent ion carrier in the construction of a Cd(II) ion membrane sensor. The tris(2-ethylhexyl) phosphate best performance corresponds to a membrane composition of 30% poly(vinyl chloride), 65%(TEHP), 3.5% BBC and 1.5% tetradodecyl-ammoniumtetrakis(4-chlorophenyl) borate(ETH 500). This sensor shows very good selectivity and sensitivity towards cadmium ion over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The effect of membrane composition, selectivity, pH and influence of additive on the response properties of electrode were investigated. The response mechanism was discussed in the view of UV-spectroscopy. The electrode exhibits a Nernstian behavior(with slope of 29.7 mV per decade) over a very wide concentration range from 1.0×10?1 to 1.0×10?8 mol·L?1 with a detection limit of 3.2×10?8 mol·L?1. It shows rela-tively fast response time in whole concentration range(<8 s) and can be used for at least 10 weeks in the pH range of 2.0-9.0. The proposed sensor is successfully used for the determination of cadmium in different chocolate sam-ples and as indicator electrode in titration with ethylene diamine tetraacetate(EDTA).展开更多
A pseudorotaxane and its polypseudorotaxanes formed between pillar[5]arene moieties and noctylpyrazinium cations as novel fluorescent sensors for the selective detection of halogen ions were reported.A collapse of the...A pseudorotaxane and its polypseudorotaxanes formed between pillar[5]arene moieties and noctylpyrazinium cations as novel fluorescent sensors for the selective detection of halogen ions were reported.A collapse of these pillar[5]arene-based pseudorotaxanes and polypseudorotaxanes occurred upon the addition of Cl,Br,and I(tetrabutylammonium salts),respectively,leading to their fluorescence recovery.The fluorescence enhancement of the pseudorotaxane and the polypseudorotaxanes increases in the order of I展开更多
CdSe/CdS quantum dots (QDs) functionalized by thiourea (TU) were synthesized and used as a fluorescent sensor for mercury ion detection. The TU-functionalized QDs were prepared by bonding TU via electrostatic inte...CdSe/CdS quantum dots (QDs) functionalized by thiourea (TU) were synthesized and used as a fluorescent sensor for mercury ion detection. The TU-functionalized QDs were prepared by bonding TU via electrostatic interaction to the core/shell CdSe/CdS QDs after capping with thioglycolic acid (TGA). It was observed that the fluorescence of the functionalized QDs was quenched upon the addition of Hg^2+. The quantitative detection of Hg^2+ with this fluorescent sensor could be conducted based on the linear relationship between the extent of quenching and the concentration of Hg^2+ added in the range of 1-300 μg.L^-1, A detection limit of 0.56 μg.L^-1 was achieved. The sensor showed superior selectivity for Hg^2+ and was successfully applied to the determination of mercury in environmental samples with satisfactory results展开更多
Silver nanoplates as novel optical sensors for Cu^2+ detection have been demonstrated.Silver nanoplates are synthesized via previous H_2O_2-NaBH_4 cyclic oxidation-reduction reactions.With introduction of ascorbate a...Silver nanoplates as novel optical sensors for Cu^2+ detection have been demonstrated.Silver nanoplates are synthesized via previous H_2O_2-NaBH_4 cyclic oxidation-reduction reactions.With introduction of ascorbate as mild reductants,Cu^2+ ions are reduced into Cu~+ and the Cu^+ is further reduced to Cu,which is deposited on the surface of the silver nanoplates.The deposition of the Cu on the surface of the silver nanoplates allows a significant red-shift of their plasmon absorption.Therefore,trace Cu^2+ can be detected.The shift of the plasmon absorption wavelength of silver nanoplates is proportional to the Cu^2+concentration over a range of 40-340 μmol L^(-1) with a limit of detection of 9.0 μmol L^(-1).Moreover,such silver nanoplate-based optical sensors provide good selectivity for Cu^2+ detection,and most other metal ions do not disturb its detection.Moreover,the practicality of the proposed sensor was tested.This Cu^2+assay is advantageous in its simplicity,selectivity,and cost-effectiveness.展开更多
A new tetraphenylethylene-cyclodextrin (TPE-CD) conjugate with a linkage composed of long triethylene glycol chain and triazole ring on the CD rim has been designed and synthesized. The TPE-CD conjugate exists in a st...A new tetraphenylethylene-cyclodextrin (TPE-CD) conjugate with a linkage composed of long triethylene glycol chain and triazole ring on the CD rim has been designed and synthesized. The TPE-CD conjugate exists in a stretched form in DMSO and enhances its fluorescence after addition of a small amount of water due to aggregation-induced emission (AIE) effect. However, in the presence of a large amount of water, the TPE unit will enter the cyclodextrin cavity to form a folded self-inclusion compound. In the self-inclusion compound, not only nitrogen-containing pseudo-crown ether is formed but also arouses photo-induced electron transfer (PET) process from nitrogen atoms of triazole ring to TPE unit and quenches the fluorescence although more aggregation occurs in more water. This is the first finding that TPE-macrocycle conjugate can form pseudo-crown ether and has both the AIE phenomenon and the PET effect. Interestingly, only mercury ion arouses the fluorescence recover of the self-inclusion compound by entering the pseudo-crown ether cavity and blocking the PET process by binding to the nitrogen atoms, while other tested metal ions almost have no effect on the fluorescence. Therefore, the TPE-CD conjugate can be used for the highly selective fluorescence "Turn-On" detection of Hg^(2+).展开更多
Two novel AIE-active salicylaldehyde azine(SAA) derivatives with a typical excited-state intramolecular proton transfer(ESIPT) process are prepared by introducing electron-withdrawing and donating groups at para-posit...Two novel AIE-active salicylaldehyde azine(SAA) derivatives with a typical excited-state intramolecular proton transfer(ESIPT) process are prepared by introducing electron-withdrawing and donating groups at para-position of phenolic hydroxyl group(CN-SAA and TPA-SAA). The effect of the proton activity in SAA framework on their optical behaviors is investigated spectroscopically. The results from NMR and solvation measurements show that the proton of phenolic hydroxyl group has higher activity when there are electron-withdrawing groups, and the absorption and fluorescence spectra in buffers with different pH also provide the same results. After inviting F. as a nucleophilic probe, this proton activity difference in CN-SAA and TPA-SAA becomes more obvious. The potential application of both molecules is investigated. TPA-SAA exhibits good quantitative sensing ability towards F. with a fluorescence "turn-on" mode, whereas the aggregates of TPA-SAA can selectively and sensitively detect Cu2+ in aqueous solution. From these results, a structure-property relationship is established: the occurrence of ESIPT process will become much easier when linking electron-withdrawing groups at the para-position of phenolic hydroxyl group(e.g., CN-SAA),and it is better to introduce electron-donating groups to enhance the sensing ability towards ions(e.g., TPA-SAA). This work will provide guidance for further design and preparation of AIE-active luminogens with ESIPT process for sensing applications.展开更多
A simple and quick method for the synthesis of water dispersible stable silver nanoparticles has been developed. Calix[4]pyrrole octahydrazide (CPOH), has been successfully used as a reducing as well as stabilizing ...A simple and quick method for the synthesis of water dispersible stable silver nanoparticles has been developed. Calix[4]pyrrole octahydrazide (CPOH), has been successfully used as a reducing as well as stabilizing agent for the synthesis of silver nanoparticles. CPOH-AgNps have been duly characterized by SPR, PSA, TEM and EDX-ray. The ability of CPOH-AgNps as selective and sensitive sensor for various ions (Pb(Ⅱ), Cd(II), Mn(Ⅱ), Fe(Ⅲ), Ni(Ⅱ), Zn(Ⅱ), Hg(Ⅱ), Co(Ⅱ), Cu(Ⅱ)) by colorimetry and spectrofluorimetry has been explored. CPOH-AgNps were found to be selective only for Hg(Ⅱ) ions. Nanomolar concentration of Hg(Ⅱ) ions can also be determined by spectrofluorimetry by increase in fluorescence intensity. Linear range of detection of Hg(Ⅱ) ions in water was found to be from 1nmol/L to mol/L. The method has been successfully applied for determination of Hg(Ⅱ) ions in ground water and industrial effluent waste water samples.展开更多
基金the National Research Foundation of Korea(NRF)Grant funded by the Ministry of Science and ICT(No.2021R1A2C1009926)“Basic project(referring to projects performed with the budget directly contributed by the Government to achieve the purposes of establishment of Government-funded research Institutes)”+3 种基金supported by the KOREA RESEARCH INSTITUTE of CHEMICAL TECHNOLOGY(KRICT)(SS2042-10)Basic research project(Project:21-3212-1)of the Korea institute of GeoscienceMineral resources funded by the Ministry of Science and ICT of Koreaby Nanomedical Devices Development Project of NNFC in 2021.
文摘Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices.However,the application of graphene fillers is limited by their restricted mass production and the low concentration of their suspensions.In this study,a highly concentrated and conductive ink based on defect-free graphene was developed by a scalable fluid dynamics process.A high shear exfoliation and mixing process enabled the production of graphene at a high concentration of 47.5 mg mL^(−1)for graphene ink.The screen-printed graphene conductor exhibits a high electrical conductivity of 1.49×10^(4)S m^(−1)and maintains high conductivity under mechanical bending,compressing,and fatigue tests.Based on the as-prepared graphene ink,a printed electrochemical sodium ion(Na^(+))sensor that shows high potentiometric sensing performance was fabricated.Further,by integrating a wireless electronic module,a prototype Na^(+)-sensing watch is demonstrated for the real-time monitoring of the sodium ion concentration in human sweat during the indoor exercise of a volunteer.The scalable and efficient procedure for the preparation of graphene ink presented in this work is very promising for the low-cost,reproducible,and large-scale printing of flexible and wearable electronic devices.
文摘This paper presents the studying results of the sodium ion sensor device based on the SnO_2/ITO glass structure in the detection of rinsing solution for contact lenses.The selective membrane contains poly (vinyl chloride) (PVC),bis (2-ethylhexyl) sebacate (DOS),(12-crown-4) methylmalonate (B12C4),and sodium tetrakis (4-fluoropbenyl) borate dehydrate (NaTFBD). The final weight ratios are PVC:DOS:B12C4:NaTFBD=33:66:2:2.In this condition,the sensor has performances with linear sensitivity,short response time,good repeatability and selectivity.The sensor was used to measure the rinsing solution for the contact lenses.Because the experimental results show close to the accurate value for four commercial products,this sensor can preliminary be used in detecting the rinsing solution for the contact lenses.Using this structure and sodium-sensing membrane to construct the sodium sensor is proven successfully in this application.
基金the Natural Science Foundation of Shaanxi Province,the Special Foundation of the Education Department of Shaanxi Province,the Special Research Fund of Xianyang Normal University for Talent Introduction
文摘In order to examine the hydronium ion (proton)-releasing functions in cells, [pH]out (extracellular pH) was measured using an ion image sensor composed of a 2D (two-dimensional) array of potential sensitive pixels. Using gastric tissues prepared from the stomach, pH distribution was observed during the histamine stimulation. The 2D distribution of [pH]out in the gastric tissues showed clear differences between the mucosal sides and the serous side. Even before the histamine stimulation, the mucosal side of the gastric mucosa showed a slightly lower pH than that of serous side. In the mucosal side, [pH]out decreased after the onset of the stimulation. The ion image sensor was capable of visualizing [pH]out in the gastric tissues. The present chemical-sensing technique realized a label-free microscopic assessment of the 2D distributions of biologically interesting substances, and consequently, [pH] out imaging via chemical microscopy has a future potential in medical fields for endoscopic analysis of gastric ulcers.
文摘Benzil bis(carbohydrazone)(BBC) is prepared and explored as new N N Schiff's base, which plays the role of an excellent ion carrier in the construction of a Cd(II) ion membrane sensor. The tris(2-ethylhexyl) phosphate best performance corresponds to a membrane composition of 30% poly(vinyl chloride), 65%(TEHP), 3.5% BBC and 1.5% tetradodecyl-ammoniumtetrakis(4-chlorophenyl) borate(ETH 500). This sensor shows very good selectivity and sensitivity towards cadmium ion over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The effect of membrane composition, selectivity, pH and influence of additive on the response properties of electrode were investigated. The response mechanism was discussed in the view of UV-spectroscopy. The electrode exhibits a Nernstian behavior(with slope of 29.7 mV per decade) over a very wide concentration range from 1.0×10?1 to 1.0×10?8 mol·L?1 with a detection limit of 3.2×10?8 mol·L?1. It shows rela-tively fast response time in whole concentration range(<8 s) and can be used for at least 10 weeks in the pH range of 2.0-9.0. The proposed sensor is successfully used for the determination of cadmium in different chocolate sam-ples and as indicator electrode in titration with ethylene diamine tetraacetate(EDTA).
基金the financial support of the National Natural Science Foundation of China (No. 21202083)Natural Science Foundation of Jiangsu (Nos. BK2011055, BK2011551)the China Postdoctoral Science Foundation (No. 2012M511717)
文摘A pseudorotaxane and its polypseudorotaxanes formed between pillar[5]arene moieties and noctylpyrazinium cations as novel fluorescent sensors for the selective detection of halogen ions were reported.A collapse of these pillar[5]arene-based pseudorotaxanes and polypseudorotaxanes occurred upon the addition of Cl,Br,and I(tetrabutylammonium salts),respectively,leading to their fluorescence recovery.The fluorescence enhancement of the pseudorotaxane and the polypseudorotaxanes increases in the order of I
基金the financial support from the National Natural Science Foundation of China (Nos. 20345006 and 20575043)
文摘CdSe/CdS quantum dots (QDs) functionalized by thiourea (TU) were synthesized and used as a fluorescent sensor for mercury ion detection. The TU-functionalized QDs were prepared by bonding TU via electrostatic interaction to the core/shell CdSe/CdS QDs after capping with thioglycolic acid (TGA). It was observed that the fluorescence of the functionalized QDs was quenched upon the addition of Hg^2+. The quantitative detection of Hg^2+ with this fluorescent sensor could be conducted based on the linear relationship between the extent of quenching and the concentration of Hg^2+ added in the range of 1-300 μg.L^-1, A detection limit of 0.56 μg.L^-1 was achieved. The sensor showed superior selectivity for Hg^2+ and was successfully applied to the determination of mercury in environmental samples with satisfactory results
基金supported by the National Natural Science Foundation of China(No.21375036)the Open Project Program of Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education(Hunan University of Science and Technology,No.E21201)
文摘Silver nanoplates as novel optical sensors for Cu^2+ detection have been demonstrated.Silver nanoplates are synthesized via previous H_2O_2-NaBH_4 cyclic oxidation-reduction reactions.With introduction of ascorbate as mild reductants,Cu^2+ ions are reduced into Cu~+ and the Cu^+ is further reduced to Cu,which is deposited on the surface of the silver nanoplates.The deposition of the Cu on the surface of the silver nanoplates allows a significant red-shift of their plasmon absorption.Therefore,trace Cu^2+ can be detected.The shift of the plasmon absorption wavelength of silver nanoplates is proportional to the Cu^2+concentration over a range of 40-340 μmol L^(-1) with a limit of detection of 9.0 μmol L^(-1).Moreover,such silver nanoplate-based optical sensors provide good selectivity for Cu^2+ detection,and most other metal ions do not disturb its detection.Moreover,the practicality of the proposed sensor was tested.This Cu^2+assay is advantageous in its simplicity,selectivity,and cost-effectiveness.
基金National Natural Science Foundation of China(Nos. 91856125 and 21673089)HUST Graduate Innovation Fund for financial support。
文摘A new tetraphenylethylene-cyclodextrin (TPE-CD) conjugate with a linkage composed of long triethylene glycol chain and triazole ring on the CD rim has been designed and synthesized. The TPE-CD conjugate exists in a stretched form in DMSO and enhances its fluorescence after addition of a small amount of water due to aggregation-induced emission (AIE) effect. However, in the presence of a large amount of water, the TPE unit will enter the cyclodextrin cavity to form a folded self-inclusion compound. In the self-inclusion compound, not only nitrogen-containing pseudo-crown ether is formed but also arouses photo-induced electron transfer (PET) process from nitrogen atoms of triazole ring to TPE unit and quenches the fluorescence although more aggregation occurs in more water. This is the first finding that TPE-macrocycle conjugate can form pseudo-crown ether and has both the AIE phenomenon and the PET effect. Interestingly, only mercury ion arouses the fluorescence recover of the self-inclusion compound by entering the pseudo-crown ether cavity and blocking the PET process by binding to the nitrogen atoms, while other tested metal ions almost have no effect on the fluorescence. Therefore, the TPE-CD conjugate can be used for the highly selective fluorescence "Turn-On" detection of Hg^(2+).
基金supported by the National Natural Science Foundation of China(21974032,U2006208,22227804,and 22304034)the Guangdong Basic and Applied Basic Research Foundation(2023B1515020110 and 2023B1515040004)+2 种基金Science and Technology Research Project of Guangzhou(202201000002 and 2023A03J0030)Department of Science&Technology of Guangdong Province(2022A156)Key Discipline of Materials Science and Engineering,Bureau of Education of Guangzhou(20225546)。
基金supported by the National Natural Science Foundation of China (51673118, 51273053)the Key Project of the Ministry of Science and Technology of China (2013CB834702)+5 种基金the Natural Science Fund of Guangdong Province (2014A030313659,2014A030306035, 2016A030312002)the Fundamental Research Funds for the Central Universities (2015ZY013)the Innovation and Technology Commission of Hong Kong (ITC-CNERC14SC01)the Science and Technology Plan of Shenzhen (JCYJ20160428150429072)the Fundamental Research Funds for the Central Universities (2017JQ013)Guangdong Innovative Research Team Program (201101C0105067115)
文摘Two novel AIE-active salicylaldehyde azine(SAA) derivatives with a typical excited-state intramolecular proton transfer(ESIPT) process are prepared by introducing electron-withdrawing and donating groups at para-position of phenolic hydroxyl group(CN-SAA and TPA-SAA). The effect of the proton activity in SAA framework on their optical behaviors is investigated spectroscopically. The results from NMR and solvation measurements show that the proton of phenolic hydroxyl group has higher activity when there are electron-withdrawing groups, and the absorption and fluorescence spectra in buffers with different pH also provide the same results. After inviting F. as a nucleophilic probe, this proton activity difference in CN-SAA and TPA-SAA becomes more obvious. The potential application of both molecules is investigated. TPA-SAA exhibits good quantitative sensing ability towards F. with a fluorescence "turn-on" mode, whereas the aggregates of TPA-SAA can selectively and sensitively detect Cu2+ in aqueous solution. From these results, a structure-property relationship is established: the occurrence of ESIPT process will become much easier when linking electron-withdrawing groups at the para-position of phenolic hydroxyl group(e.g., CN-SAA),and it is better to introduce electron-donating groups to enhance the sensing ability towards ions(e.g., TPA-SAA). This work will provide guidance for further design and preparation of AIE-active luminogens with ESIPT process for sensing applications.
基金financial assistance provided by University Grants Commission (New Delhi. India), GUJCOST (Gandhinagar, India)
文摘A simple and quick method for the synthesis of water dispersible stable silver nanoparticles has been developed. Calix[4]pyrrole octahydrazide (CPOH), has been successfully used as a reducing as well as stabilizing agent for the synthesis of silver nanoparticles. CPOH-AgNps have been duly characterized by SPR, PSA, TEM and EDX-ray. The ability of CPOH-AgNps as selective and sensitive sensor for various ions (Pb(Ⅱ), Cd(II), Mn(Ⅱ), Fe(Ⅲ), Ni(Ⅱ), Zn(Ⅱ), Hg(Ⅱ), Co(Ⅱ), Cu(Ⅱ)) by colorimetry and spectrofluorimetry has been explored. CPOH-AgNps were found to be selective only for Hg(Ⅱ) ions. Nanomolar concentration of Hg(Ⅱ) ions can also be determined by spectrofluorimetry by increase in fluorescence intensity. Linear range of detection of Hg(Ⅱ) ions in water was found to be from 1nmol/L to mol/L. The method has been successfully applied for determination of Hg(Ⅱ) ions in ground water and industrial effluent waste water samples.