谐波电流检测是有源电力滤波器的关键环节之一,采用锁相环准确锁定电网电压频率是保证正确检测谐波电流的重要前提。基于瞬时无功功率理论ip-iq谐波电流检测算法,详细研究了应用于谐波检测环节的各种软件锁相环的原理及优缺点,并在此基...谐波电流检测是有源电力滤波器的关键环节之一,采用锁相环准确锁定电网电压频率是保证正确检测谐波电流的重要前提。基于瞬时无功功率理论ip-iq谐波电流检测算法,详细研究了应用于谐波检测环节的各种软件锁相环的原理及优缺点,并在此基础上,对基于DSC(Delay Signal Cancellation)模块的三相软件锁相环进行了改进。仿真和实验结果表明基于DSC模块的新型三相软件锁相环SPLL(Software Phase-locked Loop)算法实现简单,运算速度快,能够准确锁定相位信息。展开更多
Distributed Denial-of-Service (DDoS) attacks against public web servers are increasingly common. Countering DDoS attacks are becoming ever more challenging with the vast resources and techniques increasingly available...Distributed Denial-of-Service (DDoS) attacks against public web servers are increasingly common. Countering DDoS attacks are becoming ever more challenging with the vast resources and techniques increasingly available to attackers. It is impossible for the victim servers to work on the individual level of on-going traffic flows. In this paper, we establish IP Flow which is used to select proper features for DDoS detection. The IP flow statistics is used to allocate the weights for traffic routing by routers. Our system protects servers from DDoS attacks without strong client authentication or allowing an attacker with partial connectivity information to repeatedly disrupt communications. The new algorithm is thus proposed to get efficiently maximum throughput by the traffic filtering, and its feasibility and validity have been verified in a real network circumstance. The experiment shows that it is with high average detection and with low false alarm and miss alarm. Moreover, it can optimize the network traffic simultaneously with defending against DDoS attacks, thus eliminating efficiently the global burst of traffic arising from normal traffic.展开更多
In order to classify packet, we propose a novel IP classification based the non-collision hash and jumping table trie-tree (NHJTTT) algorithm, which is based on noncollision hash Trie-tree and Lakshman and Stiliadis p...In order to classify packet, we propose a novel IP classification based the non-collision hash and jumping table trie-tree (NHJTTT) algorithm, which is based on noncollision hash Trie-tree and Lakshman and Stiliadis proposing a 2-dimensional classification algorithm (LS algorithm). The core of algorithm consists of two parts: structure the non-collision hash function, which is constructed mainly based on destination/source port and protocol type field so that the hash function can avoid space explosion problem; introduce jumping table Trie-tree based LS algorithm in order to reduce time complexity. The test results show that the classification rate of NHJTTT algorithm is up to 1 million packets per second and the maximum memory consumed is 9 MB for 10 000 rules. Key words IP classification - lookup algorithm - trie-tree - non-collision hash - jumping table CLC number TN 393.06 Foundation item: Supported by the Chongqing of Posts and Telecommunications Younger Teacher Fundation (A2003-03).Biography: SHANG Feng-jun (1972-), male, Ph.D. candidate, lecture, research direction: the smart instrument and network.展开更多
This In the past decade there has been an increasing need for designs to address the time and cost efficiency issues from various computer network applications such as general IP address lookup and specific network in...This In the past decade there has been an increasing need for designs to address the time and cost efficiency issues from various computer network applications such as general IP address lookup and specific network intrusion detection. Hashing techniques have been widely adopted for this purpose, among which XOR-operation-based hashing is one of most popular techniques due to its relatively small hash process delay. In most current commonly used XOR-hashing algorithms, each of the hash key bits is usually explicitly XORed only at most once in the hash process, which may limit the amount of potential randomness that can be introduced by the hashing process. In [1] a series of bit duplication techniques are proposed by systematically duplicating one row of key bits. This paper further looks into various ways in duplicating and reusing key bits to maximize randomness needed in the hashing process so as to enhance the overall performance further. Our simulation results show that, even with a slight increase in hardware requirement, a very significant reduction in the amount of hash collision can be obtained by the proposed technique.展开更多
Currently,telecom fraud is expanding from the traditional telephone network to the Internet,and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights.Ho...Currently,telecom fraud is expanding from the traditional telephone network to the Internet,and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights.However,existing telecom fraud identification methods based on blacklists,reputation,content and behavioral characteristics have good identification performance in the telephone network,but it is difficult to apply to the Internet where IP(Internet Protocol)addresses change dynamically.To address this issue,we propose a fraudulent IP identification method based on homology detection and DBSCAN(Density-Based Spatial Clustering of Applications with Noise)clustering(DC-FIPD).First,we analyze the aggregation of fraudulent IP geographies and the homology of IP addresses.Next,the collected fraudulent IPs are clustered geographically to obtain the regional distribution of fraudulent IPs.Then,we constructed the fraudulent IP feature set,used the genetic optimization algorithm to determine the weights of the fraudulent IP features,and designed the calculation method of the IP risk value to give the risk value threshold of the fraudulent IP.Finally,the risk value of the target IP is calculated and the IP is identified based on the risk value threshold.Experimental results on a real-world telecom fraud detection dataset show that the DC-FIPD method achieves an average identification accuracy of 86.64%for fraudulent IPs.Additionally,the method records a precision of 86.08%,a recall of 45.24%,and an F1-score of 59.31%,offering a comprehensive evaluation of its performance in fraud detection.These results highlight the DC-FIPD method’s effectiveness in addressing the challenges of fraudulent IP identification.展开更多
文摘谐波电流检测是有源电力滤波器的关键环节之一,采用锁相环准确锁定电网电压频率是保证正确检测谐波电流的重要前提。基于瞬时无功功率理论ip-iq谐波电流检测算法,详细研究了应用于谐波检测环节的各种软件锁相环的原理及优缺点,并在此基础上,对基于DSC(Delay Signal Cancellation)模块的三相软件锁相环进行了改进。仿真和实验结果表明基于DSC模块的新型三相软件锁相环SPLL(Software Phase-locked Loop)算法实现简单,运算速度快,能够准确锁定相位信息。
文摘Distributed Denial-of-Service (DDoS) attacks against public web servers are increasingly common. Countering DDoS attacks are becoming ever more challenging with the vast resources and techniques increasingly available to attackers. It is impossible for the victim servers to work on the individual level of on-going traffic flows. In this paper, we establish IP Flow which is used to select proper features for DDoS detection. The IP flow statistics is used to allocate the weights for traffic routing by routers. Our system protects servers from DDoS attacks without strong client authentication or allowing an attacker with partial connectivity information to repeatedly disrupt communications. The new algorithm is thus proposed to get efficiently maximum throughput by the traffic filtering, and its feasibility and validity have been verified in a real network circumstance. The experiment shows that it is with high average detection and with low false alarm and miss alarm. Moreover, it can optimize the network traffic simultaneously with defending against DDoS attacks, thus eliminating efficiently the global burst of traffic arising from normal traffic.
文摘In order to classify packet, we propose a novel IP classification based the non-collision hash and jumping table trie-tree (NHJTTT) algorithm, which is based on noncollision hash Trie-tree and Lakshman and Stiliadis proposing a 2-dimensional classification algorithm (LS algorithm). The core of algorithm consists of two parts: structure the non-collision hash function, which is constructed mainly based on destination/source port and protocol type field so that the hash function can avoid space explosion problem; introduce jumping table Trie-tree based LS algorithm in order to reduce time complexity. The test results show that the classification rate of NHJTTT algorithm is up to 1 million packets per second and the maximum memory consumed is 9 MB for 10 000 rules. Key words IP classification - lookup algorithm - trie-tree - non-collision hash - jumping table CLC number TN 393.06 Foundation item: Supported by the Chongqing of Posts and Telecommunications Younger Teacher Fundation (A2003-03).Biography: SHANG Feng-jun (1972-), male, Ph.D. candidate, lecture, research direction: the smart instrument and network.
文摘This In the past decade there has been an increasing need for designs to address the time and cost efficiency issues from various computer network applications such as general IP address lookup and specific network intrusion detection. Hashing techniques have been widely adopted for this purpose, among which XOR-operation-based hashing is one of most popular techniques due to its relatively small hash process delay. In most current commonly used XOR-hashing algorithms, each of the hash key bits is usually explicitly XORed only at most once in the hash process, which may limit the amount of potential randomness that can be introduced by the hashing process. In [1] a series of bit duplication techniques are proposed by systematically duplicating one row of key bits. This paper further looks into various ways in duplicating and reusing key bits to maximize randomness needed in the hashing process so as to enhance the overall performance further. Our simulation results show that, even with a slight increase in hardware requirement, a very significant reduction in the amount of hash collision can be obtained by the proposed technique.
基金funded by the National Natural Science Foundation of China under Grant No.62002103Henan Province Science Foundation for Youths No.222300420058+1 种基金Henan Province Science and Technology Research Project No.232102321064Teacher Education Curriculum Reform Research Priority Project No.2023-JSJYZD-011.
文摘Currently,telecom fraud is expanding from the traditional telephone network to the Internet,and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights.However,existing telecom fraud identification methods based on blacklists,reputation,content and behavioral characteristics have good identification performance in the telephone network,but it is difficult to apply to the Internet where IP(Internet Protocol)addresses change dynamically.To address this issue,we propose a fraudulent IP identification method based on homology detection and DBSCAN(Density-Based Spatial Clustering of Applications with Noise)clustering(DC-FIPD).First,we analyze the aggregation of fraudulent IP geographies and the homology of IP addresses.Next,the collected fraudulent IPs are clustered geographically to obtain the regional distribution of fraudulent IPs.Then,we constructed the fraudulent IP feature set,used the genetic optimization algorithm to determine the weights of the fraudulent IP features,and designed the calculation method of the IP risk value to give the risk value threshold of the fraudulent IP.Finally,the risk value of the target IP is calculated and the IP is identified based on the risk value threshold.Experimental results on a real-world telecom fraud detection dataset show that the DC-FIPD method achieves an average identification accuracy of 86.64%for fraudulent IPs.Additionally,the method records a precision of 86.08%,a recall of 45.24%,and an F1-score of 59.31%,offering a comprehensive evaluation of its performance in fraud detection.These results highlight the DC-FIPD method’s effectiveness in addressing the challenges of fraudulent IP identification.