The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the ...The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the TR hazard severity of LIBs,are not known.In this paper,the TR and gas venting behavior of three 100 A h lithium iron phosphate(LFP)batteries with different safety valves are investigated under overheating.Compared to previous studies,the main contribution of this work is in studying and evaluating the effect of gas venting behavior and TR hazard severity of LFP batteries with three safety valve types.Two significant results are obtained:(Ⅰ)the safety valve type dominates over gas venting pressure of battery during safety venting,the maximum gas venting pressure of LFP batteries with a round safety valve is 3320 Pa,which is one order of magnitude higher than other batteries with oval or cavity safety valve;(Ⅱ)the LFP battery with oval safety valve has the lowest TR hazard as shown by the TR hazard assessment model based on gray-fuzzy analytic hierarchy process.This study reveals the effect of safety valve type on TR and gas venting,providing a clear direction for the safety valve design.展开更多
The cathode material of carbon-coated lithium iron phosphate(LiFePO4/C)lithium-ion battery was synthesized by a self-winding thermal method.The material was characterized by X-ray diffraction(XRD)and scanning electron...The cathode material of carbon-coated lithium iron phosphate(LiFePO4/C)lithium-ion battery was synthesized by a self-winding thermal method.The material was characterized by X-ray diffraction(XRD)and scanning electron microscope(SEM).The electrochemical properties of LiFePO4/C materials were measured by the constant current charge-discharge method and cyclic voltammetry.The results showed that the LiFePO4/C material prepared by the self-propagating heat method has a typical olivine crystal structure,and the product had fine grains and good electrochemical properties.The optimal sintering temperature is 700℃,the sintering time is 24 h,the particle size of the lithium iron phosphate material is about 300 nm,and the maximum discharge capacity is 121 mAh/g at 0.1 C rate.展开更多
Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phospha...Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by low-molecular-weight organic acids. Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the p K _a values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was not correlated with p K _a. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.展开更多
Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical prec...Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical precipitation.Using stoichiometric Na2S2O8 as an oxidant and adding low-concentration H2SO4 as a leaching agent was proposed.This route was totally different from the conventional methods of dissolving all of the elements into solution by using excess mineral acid.When experiments were done under optimal conditions(Na2S2O8-to-Li molar ratio 0.45,0.30 mol/L H2SO4,60℃,1.5 h),leaching efficiencies of 97.53% for Li^+,1.39%for Fe^3+,and 2.58% for PO4^3−were recorded.FePO4 was then recovered by a precipitation method from the leachate while maintaining the pH at 2.0.The mother liquor was concentrated and maintained at a temperature of approximately 100℃,and then a saturated sodium carbonate solution was added to precipitate Li2CO3.The lithium recovery yield was close to 80%.展开更多
The reduction of less stable ferric hydroxides and formation of ferrous phases is critical for the fate of phosphorus in anaerobic soils and sediments. The interaction between ferrous iron and phosphate was investigat...The reduction of less stable ferric hydroxides and formation of ferrous phases is critical for the fate of phosphorus in anaerobic soils and sediments. The interaction between ferrous iron and phosphate was investigated experimentally during the reduction of synthetic ferrihydrite with natural organic materials as carbon source. Ferrihydrite was readily reduced by dissimilatory iron reducing bacteria (DIRB) with between 52% and 73% Fe(III) converted to Fe(II) after 31 days, higher than without DIRB. Formation of ferrous phases was linearly coupled to almost complete removal of both aqueous and exchangeable phosphate. Simple model calculations based on the incubation data suggested ferrous phases bound phosphate with a molar ratio of Fe(II):P between 1.14 - 2.25 or a capacity of 246 - 485 mg·P·g-1 Fe(II). XRD analysis indicated that the ratio of Fe(II): P was responsible for the precipitation of vivianite (Fe3(PO4)2·8H2O), a dominant Fe(II) phosphate mineral in incubation systems. When the ratio of Fe(II):P was more than 1.5, the precipitation of Fe(II) phosphate was soundly crystallized to vivianite. Thus, reduction of ferric iron provides a mechanism for the further removal of available phosphate via the production of ferrous phases, with anaerobic soils and sediments potentially exhibiting a higher capacity to bind phosphate than some aerobic systems.展开更多
The products of monoammonium phosphate containing Cr^3+resulted in disqualification,and further posed a serious threat to ecological environment and human beings.Herein,the porous adsorbent of fluor(calcium silicate)c...The products of monoammonium phosphate containing Cr^3+resulted in disqualification,and further posed a serious threat to ecological environment and human beings.Herein,the porous adsorbent of fluor(calcium silicate)composites(FCSc)was prepared by hydrothermal method using diatomaceous earth,hydrated lime and additive(NaF)as raw materials,which was characterized and used for the removal of Cr^3+from monoammonium phosphate solutions.The effects of different parameters,such as solution pH,initial Cr^3+concentration,temperature and contact time on the adsorption of Cr^3+onto FCSc were investigated in details.The results indicated that the adsorption process was in agreement with the pseudo-second-order kinetic model and Freundlich isotherm.The spontaneous and endothermic nature of the adsorption process was obtained by analyzing various thermodynamic parameters(△G0,△H0,and△S0).In addition,computational monte carlo simulations between Cr3+ions and FCSc were conducted to elucidate the adsorption mechanism.Such kind of porous adsorbent provided a potential application in the removal of impurities from monoammonium phosphate industry.展开更多
A cobalt-iron alloy thin-film electrode-based electrochemical hydrogen-phosphate-ion sensor was prepared by electrodepositing on an Au-coated Al2O3 substrate from an aqueous solution of metal-salts. The use of a cobal...A cobalt-iron alloy thin-film electrode-based electrochemical hydrogen-phosphate-ion sensor was prepared by electrodepositing on an Au-coated Al2O3 substrate from an aqueous solution of metal-salts. The use of a cobalt-iron alloy electrode greatly improved the hydrogen-ion sensor response performance, i.e., the sensor worked stably for more than 7 weeks and showed a quick response time of several seconds. Among the cobalt and iron alloy systems tested, the electrodeposited Co58Fe42 thin-film electrode showed the best EMF response characteristics, i.e., the sensor exhibited a linear potentiometric response to hydrogen-phosphate ion at the concentration range between 1.0 × 10–5 and 1.0 × 10–2 M with the slope of –43 mV/decade at pH 5.0 and at 30℃. A sensing mechanism of the Co-based potentiometric hydrogen-phosphate ion sensor was proposed on the basis of results of instrumental analysis.展开更多
A study was carried out on contribution of iron pbosphate to phosphorus nutrition of rice plant nnderwaterlogged and moist conditions, respectively, by use of synthetic Fe ̄(32) PO_4 . nH_2O, tagging directly the iron...A study was carried out on contribution of iron pbosphate to phosphorus nutrition of rice plant nnderwaterlogged and moist conditions, respectively, by use of synthetic Fe ̄(32) PO_4 . nH_2O, tagging directly the ironphophate in calcareous paddy soils.Results showed that under waterlogged condition, similar to iron phosphate in acidic paddy soils, that incalcareous paddy soils was an important source of phosphorus to rice plant, and the amount of phosphorusoriginated from it generally constituted 30-65% of the total phosphorus absorbed by rice plant.展开更多
盐湖卤水萃取法提锂的工艺中,磷酸三丁酯-FeCl_(3)-煤油协萃体系在多次循环使用后萃取能力会下降甚至失效。将失效锂萃取剂中的Fe(Ⅲ)回收利用对盐湖提锂行业的持续发展具有重要意义。在高浓度盐酸体系中模拟失效锂萃取剂,以其中的Fe(Ⅲ...盐湖卤水萃取法提锂的工艺中,磷酸三丁酯-FeCl_(3)-煤油协萃体系在多次循环使用后萃取能力会下降甚至失效。将失效锂萃取剂中的Fe(Ⅲ)回收利用对盐湖提锂行业的持续发展具有重要意义。在高浓度盐酸体系中模拟失效锂萃取剂,以其中的Fe(Ⅲ)为铁源,NH_(4)H_(2)PO_(4)溶液为磷源,在非均相体系中制备电池级磷酸铁。研究了反应时间、氨水加入量、NH_(4)H_(2)PO_(4)溶液浓度、反应温度和搅拌速率对产品产率、粒径(D_(50))和铁磷物质的量比的影响。结果表明,在优化的工艺条件下,可制得高纯度的单斜晶系二水磷酸铁,产率为89.43%、铁磷物质的量比为0.98、D_(50)为1.81μm、比表面积为37.38 m^(2)/g、含水量为19.64%,符合电池级磷酸铁的行业标准。以自制的磷酸铁为前驱体制备的Li Fe PO_(4)/C性能良好,在0.1C倍率下的首次放电比容量为146.58 m A·h/g,首次充放电效率为94.90%,恒流充放电循环80圈后的容量保持率为91.72%。研究表明,采用NH_(4)H_(2)PO_(4)溶液反萃沉淀法可有效回收失效锂萃取剂中的Fe(Ⅲ)并制备出电池级磷酸铁。展开更多
Environmentally persistent and bioaccumulative perfluorooctanic acid (PFOA) was difficult to be decomposed under the irradiation of 254 nm UV light. However, in the presence of 80μmol/L Fe(Ⅲ), 80% of PFOA with i...Environmentally persistent and bioaccumulative perfluorooctanic acid (PFOA) was difficult to be decomposed under the irradiation of 254 nm UV light. However, in the presence of 80μmol/L Fe(Ⅲ), 80% of PFOA with initial concentration of 48μmol/L (20 mg/L) was effectively degraded and 47.8% of fluorine atoms in PFOA molecule were transformed into inorganic fluoride ion after 4 h reaction. Shorter chain perfluorocarboxylic acids bearing C3-C7 and fluoride ion were detected and identified by LC/MS and IC as the degradation products in the aqueous solution. It was proposed that complexes of PFOA with Fe(Ⅲ) initiated degradation of PFOA irradiated with 254 nm UV light.展开更多
A selective and sensitive reagent of 2-pyridine carboxaldehyde isonicotinyl hydrazone(2-PYAINH) was synthesized and studied for the spectrophotometric determination of nickel, copper, cobalt, and iron in detail. At ...A selective and sensitive reagent of 2-pyridine carboxaldehyde isonicotinyl hydrazone(2-PYAINH) was synthesized and studied for the spectrophotometric determination of nickel, copper, cobalt, and iron in detail. At a pH value of 7.0, 9,0, 9.0, and 8.0, respectively, which greatly increased the selectivity; nickel, copper, cobalt, and iron reacted with 2-PYAINH to form a 1:2 yellow-orange, 1:2 yellow-green, 1:2 yellow and 1:1 yellow complexes, with absorption peaks at 363, 352, 346, and 359 nm, respectively. Under the optimal conditions, Beer's law was obeyed over the ranges of 0.01-1.4, 0.01-1.5, 0.01-2.7, and 0.01-5.4 mg/L respectively. The apparent molar absorptivity and Sandell's sensitivities were 8.4×10^4, 5.2×10^4, 7.1×10^4, and 3.9×10^4 L·mol^-l·cm^-1, respectively, and 0.00069, 0.0012, 0.00078, and 0.0014 μg·cm2, respectively. The detection limits were found to be 0.001, 0.002, 0.003, and 0.01 mg/L, respectively. The detailed study of various interfering ions to make the method more sensitive was carried out and selective and several real samples were analyzed with satisfactory results.展开更多
The coordination nature of a number of substituted sodiumphenoxides to iron (Ⅲ) ion has been studied. The o-nitrosodiumphenoxide was found to have different coordination behaviour from that the sodium salts of sali...The coordination nature of a number of substituted sodiumphenoxides to iron (Ⅲ) ion has been studied. The o-nitrosodiumphenoxide was found to have different coordination behaviour from that the sodium salts of salicylic acid and methylsalicylate showed. The structure of the complexes, the number of the ligands being coordinated to the metal ion, has also been determined by titration, uv-vis spectroscopy, atomic absorption and the flame test. In addition, other sodium phenoxides were also involved in this study for comparison. An electric conductivity study on the resulting complexes was carried out and all complexes were found to be semiconductors.展开更多
The kinetic study on the hydrolysis reaction of bis(4-nitrophenyl) phosphate (BNPP) catalyzed by Tb-BDBPH system(2:1) was carried out in 50% ethanol solution (pH 7.0-10.0) at 35℃ with I=0.10NaNO3. The second...The kinetic study on the hydrolysis reaction of bis(4-nitrophenyl) phosphate (BNPP) catalyzed by Tb-BDBPH system(2:1) was carried out in 50% ethanol solution (pH 7.0-10.0) at 35℃ with I=0.10NaNO3. The second-order rate constant kBNPP, 2.3×10.3 (mol^-1L S^-1), was determined. The dinuclear monohydroxo species, L-2Tb-OH, is kinetically mainly active species. The hydrolysis rate of BNPP by the complex is increased almost 2.6 million-fold compared with the background hydroxide rate at the same condition.展开更多
Reaction of 3,5-pyridine-dicarboxylic acid(3,5-PydcH2) with iron salt in hydrothermal condition results in the formation of a three-dimensional self-assembly network formulated as [C14H14Fe2N2O12]n,and it has been s...Reaction of 3,5-pyridine-dicarboxylic acid(3,5-PydcH2) with iron salt in hydrothermal condition results in the formation of a three-dimensional self-assembly network formulated as [C14H14Fe2N2O12]n,and it has been structurally characterized by elemental analysis,IR spectra and X-ray diffraction.It crystallizes in the monoclinic system,space group C2/c with a=9.9633(15),b=12.0942(18),c=7.4297(11)A and β=105.822o.The units of Fe2(pydc)2·2H2O are linked into a one-dimensional structure via the chelate carboxylate groups from the 3,5-pyridine-dicarboxylate.The interlayer hydrogen bonding interactions result in a three-dimensional supramolecular architecture.In the complex,the Fe(Ⅲ) ion displays a slightly distorted pentagonal bipyramidal geometry with seven coordination numbers.Cyclic-voltammetry measurement reveals the oxidation and reduction processes for the complex are quasi-reversible in nature.展开更多
基金supported by the National Key R&D Program of China(No.2021YFB2402001)the Postgraduate Innovation and Entrepreneurship Practice Project of Anhui Province(No.2022cxcysj013)+2 种基金the China Postdoctoral Science Foundation(No.2022T150615)the Fundamental Research Funds for the Central Universities(No.WK5290000002)supported by Youth Innovation Promotion Association CAS(No.Y201768)。
文摘The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the TR hazard severity of LIBs,are not known.In this paper,the TR and gas venting behavior of three 100 A h lithium iron phosphate(LFP)batteries with different safety valves are investigated under overheating.Compared to previous studies,the main contribution of this work is in studying and evaluating the effect of gas venting behavior and TR hazard severity of LFP batteries with three safety valve types.Two significant results are obtained:(Ⅰ)the safety valve type dominates over gas venting pressure of battery during safety venting,the maximum gas venting pressure of LFP batteries with a round safety valve is 3320 Pa,which is one order of magnitude higher than other batteries with oval or cavity safety valve;(Ⅱ)the LFP battery with oval safety valve has the lowest TR hazard as shown by the TR hazard assessment model based on gray-fuzzy analytic hierarchy process.This study reveals the effect of safety valve type on TR and gas venting,providing a clear direction for the safety valve design.
基金Maoming Science and Technology Special Fund Project(Project No.2019018003).Characteristic Innovation Project of Universities in Guangdong Province(Project No.2018KTSCX147).Science and Technology Program of Maoming City(Project No.2020527).
文摘The cathode material of carbon-coated lithium iron phosphate(LiFePO4/C)lithium-ion battery was synthesized by a self-winding thermal method.The material was characterized by X-ray diffraction(XRD)and scanning electron microscope(SEM).The electrochemical properties of LiFePO4/C materials were measured by the constant current charge-discharge method and cyclic voltammetry.The results showed that the LiFePO4/C material prepared by the self-propagating heat method has a typical olivine crystal structure,and the product had fine grains and good electrochemical properties.The optimal sintering temperature is 700℃,the sintering time is 24 h,the particle size of the lithium iron phosphate material is about 300 nm,and the maximum discharge capacity is 121 mAh/g at 0.1 C rate.
文摘Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by low-molecular-weight organic acids. Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the p K _a values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was not correlated with p K _a. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.
基金Project(Z20160605230001)supported by Hunan Province Non-ferrous Fund Project,China。
文摘Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical precipitation.Using stoichiometric Na2S2O8 as an oxidant and adding low-concentration H2SO4 as a leaching agent was proposed.This route was totally different from the conventional methods of dissolving all of the elements into solution by using excess mineral acid.When experiments were done under optimal conditions(Na2S2O8-to-Li molar ratio 0.45,0.30 mol/L H2SO4,60℃,1.5 h),leaching efficiencies of 97.53% for Li^+,1.39%for Fe^3+,and 2.58% for PO4^3−were recorded.FePO4 was then recovered by a precipitation method from the leachate while maintaining the pH at 2.0.The mother liquor was concentrated and maintained at a temperature of approximately 100℃,and then a saturated sodium carbonate solution was added to precipitate Li2CO3.The lithium recovery yield was close to 80%.
文摘The reduction of less stable ferric hydroxides and formation of ferrous phases is critical for the fate of phosphorus in anaerobic soils and sediments. The interaction between ferrous iron and phosphate was investigated experimentally during the reduction of synthetic ferrihydrite with natural organic materials as carbon source. Ferrihydrite was readily reduced by dissimilatory iron reducing bacteria (DIRB) with between 52% and 73% Fe(III) converted to Fe(II) after 31 days, higher than without DIRB. Formation of ferrous phases was linearly coupled to almost complete removal of both aqueous and exchangeable phosphate. Simple model calculations based on the incubation data suggested ferrous phases bound phosphate with a molar ratio of Fe(II):P between 1.14 - 2.25 or a capacity of 246 - 485 mg·P·g-1 Fe(II). XRD analysis indicated that the ratio of Fe(II): P was responsible for the precipitation of vivianite (Fe3(PO4)2·8H2O), a dominant Fe(II) phosphate mineral in incubation systems. When the ratio of Fe(II):P was more than 1.5, the precipitation of Fe(II) phosphate was soundly crystallized to vivianite. Thus, reduction of ferric iron provides a mechanism for the further removal of available phosphate via the production of ferrous phases, with anaerobic soils and sediments potentially exhibiting a higher capacity to bind phosphate than some aerobic systems.
基金the National Natural Science Foundation of China(U1633203)the Major Project of the Civil Aviation Administration of China(J2020-108)。
文摘The products of monoammonium phosphate containing Cr^3+resulted in disqualification,and further posed a serious threat to ecological environment and human beings.Herein,the porous adsorbent of fluor(calcium silicate)composites(FCSc)was prepared by hydrothermal method using diatomaceous earth,hydrated lime and additive(NaF)as raw materials,which was characterized and used for the removal of Cr^3+from monoammonium phosphate solutions.The effects of different parameters,such as solution pH,initial Cr^3+concentration,temperature and contact time on the adsorption of Cr^3+onto FCSc were investigated in details.The results indicated that the adsorption process was in agreement with the pseudo-second-order kinetic model and Freundlich isotherm.The spontaneous and endothermic nature of the adsorption process was obtained by analyzing various thermodynamic parameters(△G0,△H0,and△S0).In addition,computational monte carlo simulations between Cr3+ions and FCSc were conducted to elucidate the adsorption mechanism.Such kind of porous adsorbent provided a potential application in the removal of impurities from monoammonium phosphate industry.
文摘A cobalt-iron alloy thin-film electrode-based electrochemical hydrogen-phosphate-ion sensor was prepared by electrodepositing on an Au-coated Al2O3 substrate from an aqueous solution of metal-salts. The use of a cobalt-iron alloy electrode greatly improved the hydrogen-ion sensor response performance, i.e., the sensor worked stably for more than 7 weeks and showed a quick response time of several seconds. Among the cobalt and iron alloy systems tested, the electrodeposited Co58Fe42 thin-film electrode showed the best EMF response characteristics, i.e., the sensor exhibited a linear potentiometric response to hydrogen-phosphate ion at the concentration range between 1.0 × 10–5 and 1.0 × 10–2 M with the slope of –43 mV/decade at pH 5.0 and at 30℃. A sensing mechanism of the Co-based potentiometric hydrogen-phosphate ion sensor was proposed on the basis of results of instrumental analysis.
文摘A study was carried out on contribution of iron pbosphate to phosphorus nutrition of rice plant nnderwaterlogged and moist conditions, respectively, by use of synthetic Fe ̄(32) PO_4 . nH_2O, tagging directly the ironphophate in calcareous paddy soils.Results showed that under waterlogged condition, similar to iron phosphate in acidic paddy soils, that incalcareous paddy soils was an important source of phosphorus to rice plant, and the amount of phosphorusoriginated from it generally constituted 30-65% of the total phosphorus absorbed by rice plant.
文摘盐湖卤水萃取法提锂的工艺中,磷酸三丁酯-FeCl_(3)-煤油协萃体系在多次循环使用后萃取能力会下降甚至失效。将失效锂萃取剂中的Fe(Ⅲ)回收利用对盐湖提锂行业的持续发展具有重要意义。在高浓度盐酸体系中模拟失效锂萃取剂,以其中的Fe(Ⅲ)为铁源,NH_(4)H_(2)PO_(4)溶液为磷源,在非均相体系中制备电池级磷酸铁。研究了反应时间、氨水加入量、NH_(4)H_(2)PO_(4)溶液浓度、反应温度和搅拌速率对产品产率、粒径(D_(50))和铁磷物质的量比的影响。结果表明,在优化的工艺条件下,可制得高纯度的单斜晶系二水磷酸铁,产率为89.43%、铁磷物质的量比为0.98、D_(50)为1.81μm、比表面积为37.38 m^(2)/g、含水量为19.64%,符合电池级磷酸铁的行业标准。以自制的磷酸铁为前驱体制备的Li Fe PO_(4)/C性能良好,在0.1C倍率下的首次放电比容量为146.58 m A·h/g,首次充放电效率为94.90%,恒流充放电循环80圈后的容量保持率为91.72%。研究表明,采用NH_(4)H_(2)PO_(4)溶液反萃沉淀法可有效回收失效锂萃取剂中的Fe(Ⅲ)并制备出电池级磷酸铁。
文摘Environmentally persistent and bioaccumulative perfluorooctanic acid (PFOA) was difficult to be decomposed under the irradiation of 254 nm UV light. However, in the presence of 80μmol/L Fe(Ⅲ), 80% of PFOA with initial concentration of 48μmol/L (20 mg/L) was effectively degraded and 47.8% of fluorine atoms in PFOA molecule were transformed into inorganic fluoride ion after 4 h reaction. Shorter chain perfluorocarboxylic acids bearing C3-C7 and fluoride ion were detected and identified by LC/MS and IC as the degradation products in the aqueous solution. It was proposed that complexes of PFOA with Fe(Ⅲ) initiated degradation of PFOA irradiated with 254 nm UV light.
文摘A selective and sensitive reagent of 2-pyridine carboxaldehyde isonicotinyl hydrazone(2-PYAINH) was synthesized and studied for the spectrophotometric determination of nickel, copper, cobalt, and iron in detail. At a pH value of 7.0, 9,0, 9.0, and 8.0, respectively, which greatly increased the selectivity; nickel, copper, cobalt, and iron reacted with 2-PYAINH to form a 1:2 yellow-orange, 1:2 yellow-green, 1:2 yellow and 1:1 yellow complexes, with absorption peaks at 363, 352, 346, and 359 nm, respectively. Under the optimal conditions, Beer's law was obeyed over the ranges of 0.01-1.4, 0.01-1.5, 0.01-2.7, and 0.01-5.4 mg/L respectively. The apparent molar absorptivity and Sandell's sensitivities were 8.4×10^4, 5.2×10^4, 7.1×10^4, and 3.9×10^4 L·mol^-l·cm^-1, respectively, and 0.00069, 0.0012, 0.00078, and 0.0014 μg·cm2, respectively. The detection limits were found to be 0.001, 0.002, 0.003, and 0.01 mg/L, respectively. The detailed study of various interfering ions to make the method more sensitive was carried out and selective and several real samples were analyzed with satisfactory results.
文摘The coordination nature of a number of substituted sodiumphenoxides to iron (Ⅲ) ion has been studied. The o-nitrosodiumphenoxide was found to have different coordination behaviour from that the sodium salts of salicylic acid and methylsalicylate showed. The structure of the complexes, the number of the ligands being coordinated to the metal ion, has also been determined by titration, uv-vis spectroscopy, atomic absorption and the flame test. In addition, other sodium phenoxides were also involved in this study for comparison. An electric conductivity study on the resulting complexes was carried out and all complexes were found to be semiconductors.
文摘The kinetic study on the hydrolysis reaction of bis(4-nitrophenyl) phosphate (BNPP) catalyzed by Tb-BDBPH system(2:1) was carried out in 50% ethanol solution (pH 7.0-10.0) at 35℃ with I=0.10NaNO3. The second-order rate constant kBNPP, 2.3×10.3 (mol^-1L S^-1), was determined. The dinuclear monohydroxo species, L-2Tb-OH, is kinetically mainly active species. The hydrolysis rate of BNPP by the complex is increased almost 2.6 million-fold compared with the background hydroxide rate at the same condition.
基金supported by the National Natural Science Foundation of China (Nos 20771054 and 20671076)the Natural Science Foundation of Henan Province (No 0311021200)
文摘Reaction of 3,5-pyridine-dicarboxylic acid(3,5-PydcH2) with iron salt in hydrothermal condition results in the formation of a three-dimensional self-assembly network formulated as [C14H14Fe2N2O12]n,and it has been structurally characterized by elemental analysis,IR spectra and X-ray diffraction.It crystallizes in the monoclinic system,space group C2/c with a=9.9633(15),b=12.0942(18),c=7.4297(11)A and β=105.822o.The units of Fe2(pydc)2·2H2O are linked into a one-dimensional structure via the chelate carboxylate groups from the 3,5-pyridine-dicarboxylate.The interlayer hydrogen bonding interactions result in a three-dimensional supramolecular architecture.In the complex,the Fe(Ⅲ) ion displays a slightly distorted pentagonal bipyramidal geometry with seven coordination numbers.Cyclic-voltammetry measurement reveals the oxidation and reduction processes for the complex are quasi-reversible in nature.