As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates hav...As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range.展开更多
We have developed an iron(III) phthalocyanine chloride‐catalyzed oxidation–aromatization ofα,β‐unsaturated ketones with hydrazine hydrate. Various 3,5‐disubstituted 1H‐pyrazoles were obtained in good to excel...We have developed an iron(III) phthalocyanine chloride‐catalyzed oxidation–aromatization ofα,β‐unsaturated ketones with hydrazine hydrate. Various 3,5‐disubstituted 1H‐pyrazoles were obtained in good to excellent yields. This method offers several advantages, including room‐tem‐perature conditions, short reaction time, high yields, simple work‐up procedure, and use of air as an oxidant. The catalyst can be recovered and reused five times without loss of activity.展开更多
A precise understanding of the redox chemistry of Nm-Mn+(like N4-Fe^(2+))systems is essential for fundamental studies and rational design of Nm-Mn+-based electrocatalysts for the oxygen reduction reaction(ORR).Herein,...A precise understanding of the redox chemistry of Nm-Mn+(like N4-Fe^(2+))systems is essential for fundamental studies and rational design of Nm-Mn+-based electrocatalysts for the oxygen reduction reaction(ORR).Herein,three different iron phthalocyanines(FePcs)adsorbed on carbon nanotubes((NH2)4FePc@CNTs,(t-Bu)4FePc@CNTs,and FePc@CNTs)were evaluated to demonstrate the effect of the electron donating power of the substituents on the Fe^(3+)/Fe^(2+)redox potential of FePc@CNTs and the role of these composites as ORR mediators in alkaline media.The Fe^(3+)/Fe^(2+)redox potential of the FePcs was found to shift towards the cathodic region upon substitution with electron-donating groups.This up-field shift in the eg-orbital leads to a lower overlap between the onset potential of the Fe^(3+)/Fe^(2+)redox couple and that of the ORR,and thus,the ORR activity decreased in the following order based on the substitution of FePc:-H>-t-Bu>-NH2.展开更多
A chemical system for facile and accurate detection of 2,4-dichlorophenol (DCP) via iron (Ⅱ) phthalocyanine (Fe(Ⅱ)Pc) catalyzed chromogenic reaction is reported for the first time. In this system, DCP could ...A chemical system for facile and accurate detection of 2,4-dichlorophenol (DCP) via iron (Ⅱ) phthalocyanine (Fe(Ⅱ)Pc) catalyzed chromogenic reaction is reported for the first time. In this system, DCP could be oxidized by dioxygen with the catalysis of Fe(Ⅱ)Pc and then coupled with 4-aminoantipyrine (4-AAP) to generate pink antipyrilquinoneimine dye. Control experiments showed that the addition of ethanol could obviously enhance the catalytic activity of heterogeneous Fe(Ⅱ)Pc catalysts because of the partial dissolution of Fe(II)Pc nanocubes, which was confirmed by the SEM analysis. On the basis of the detection results of DCP in the range from 2×10^-5 to 9×10^-4 mol/L, we obtained a regression equation (A = 0.187 5 + 0.01 209C (R2=-0.995 6)) with the detection limit (3σ) of 3.26×10^-6 mol/L, which could be successfully used in detecting the real samples.展开更多
A new fi ber optic sensor based on the oxidation of 2,4-dichlorophenol(DCP) catalyzed by iron(II) phthalocyanine(Fe(II)Pc) was developed for the determination of DCP. The optical oxygen sensing fi lm containin...A new fi ber optic sensor based on the oxidation of 2,4-dichlorophenol(DCP) catalyzed by iron(II) phthalocyanine(Fe(II)Pc) was developed for the determination of DCP. The optical oxygen sensing fi lm containing fl uorescence indicator Ru(bpy)3Cl2 was used to detect the consumption of oxygen in solution. Moreover, a lock-in amplifier was used to determine the lifetime of the sensor head by detecting its phase delay change. The results reveal that the sensor has a linear detection range of 1.0×10^-6- 9.0×10^-5 mol/L and a response time of 5 min. The sensor also has high selectivity, good repeatability and stability. It can be used effectively to determine DCP concentration in real samples.展开更多
Oxygen reduction reaction(ORR)catalysts play a critical role in energy storage and conversion devices and have been attracted enormous interests,and however,it remains challenging to develop highly active cheap cataly...Oxygen reduction reaction(ORR)catalysts play a critical role in energy storage and conversion devices and have been attracted enormous interests,and however,it remains challenging to develop highly active cheap catalysts in a simple and green route.Inspired by the heme-copper oxidases(HOCs),in which the ORR active center is originated from the incorporation of Fe-N_(4)with copper atom,we here developed a fine manganese oxide nanosheets(MnO_(x)NSs)integrated with iron phthalocyanine(FePc)anchored on highly conductive graphene(MnO_(x)/FePc-G)through a green route only involve ethanol as the reagent.The bio-inspired catalyst MnO_(x)/Fe Pc-G demonstrated high ORR activity with a half-wave potential(E_(1/2))of 0.887 V,about 57 mV more positive than that of Pt/C.And the current density(j)at 0.9 V is about 1.9 m A cm^(-2),which is three times of Pt/C and FePc-G.More importantly,the bio-inspired systems show superior stability in comparison to commercial Pt/C,showing a potential of 0.863 V to deliver a j of 3 mA cm^(-2)after 18000 s polarization,about 80 mV higher than that of 0.783 V for Pt/C.The high activity is contributed by the integration of the Fe Pc and MnO_(x)NSs that plays the role to assist the cleavage of the O_(2)bond.Our approach provides a new evidence to develop highly efficient ORR catalysts through imitate the naturally involved systems through a simple route.展开更多
Nanoclusters(NCs)have been demonstrated of outstanding performance in electrochemical energy storage and conversion technologies due to their strong quantum confinement effects and strong interaction with supports.Her...Nanoclusters(NCs)have been demonstrated of outstanding performance in electrochemical energy storage and conversion technologies due to their strong quantum confinement effects and strong interaction with supports.Here,we developed a class of ultrafine metal-oxide(MOx,M=Fe,Co and Ni)NCs incorporated with iron phthalocyanine(FePc),MOx/FePc-G,supported on graphene as high-performance catalysts for oxygen reduction reaction(ORR),oxygen evolution reaction(OER),and carbon dioxide reduction(CO2RR).The high activities for ORR and OER are attributed to the electron donation and accepting ability of the highly redox active of FePc-G that could tune the properties of MOx.The FeOx/FePc-G exhibits an extremely positive half-wave potential(E1/2)of 0.888 and 0.610 V for ORR in alkaline and neutral conditions,respectively,which is around 60 mV more positive than that of Pt/C.And NiOx/FePc-G shows similar OER activity with the state-of-the-art catalysts,Ir/C,and better performance than NiFeO NCs supported on graphene.Remarkably,the CoOx/FePc-G and NiOx/FePc-G show high activity and selectivity to reduce CO2 into CO with a low onset potential of-0.22 V(overpotential is 0.11 V).展开更多
Oxygen evolution causes a high inner pressure during charge and overcharge for MH/Ni battery, and an inappropriate eliminating way of the oxygen in the battery results in accumulation of heat. This is the main obstacl...Oxygen evolution causes a high inner pressure during charge and overcharge for MH/Ni battery, and an inappropriate eliminating way of the oxygen in the battery results in accumulation of heat. This is the main obstacle to develop and apply high capability and high power battery. How to reduce the ratio of the chemical catalysis rate to the electric catalysis rate in MH/Ni battery is considered as an urgent question. Iron phthalocyanine(FePc) was chosen as an electrochemical catalyst. The batteries were prepared by adding iron phthalocyanine with different dosages. The inner pressure, the capacity attenuation, the discharge voltage and capacity at high current of these three batteries were compared. The battery with 1 mg FePc in the negative electrode exhibits a good performance.展开更多
Improving the performance of anode is a crucial step for increasing output power of marine sediment microbial fuel cells(MSMFCs)to drive marine monitor to work for a long term on the ocean floor.A pyrolyzed iron phtha...Improving the performance of anode is a crucial step for increasing output power of marine sediment microbial fuel cells(MSMFCs)to drive marine monitor to work for a long term on the ocean floor.A pyrolyzed iron phthalocyanine modified multi-walled carbon nanotubes composite(FePc/MWCNTs)has been utilized as a novel nodified anode in the MSMFC.Its structure of the composite modified anode and electrochemical performance have been investigated respectively in the paper.There is a substantial improvement in electron-transfer efficiency from the bacteria biofilm to the modified anode via the pyrolyzed FePc/MWCNTs composite based on their cyclic voltammetry(CV)and Tafel curves.The electron transfer kinetic activity of the FePc/MWCNTs-modified anode is 1.86 times higher than of the unmodified anode.The maximum power density of the modified MSMFC was 572.3±14 m W m^-2,which is 2.6 times larger than the unmodified one(218.3±11 m W m^-2).The anodic structure and cell scale would be greatly minimized to obtain the same output power by the modified MSMFC,so that it will make the MSMFC to be easily deployed on the remote ocean floor.Therefore,it would have a great significance for us to design a novel and renewable long term power source.Finally,a novel molecular synergetic mechanism is proposed to elucidate its excellent electrochemical performance.展开更多
We investigate the electronic structures of one and two monolayer iron phthalocyanine (FePc) molecules on Au(111) surfaces. The first monolayer FePc is lying flat on the Au(111) substrate, and the second monolay...We investigate the electronic structures of one and two monolayer iron phthalocyanine (FePc) molecules on Au(111) surfaces. The first monolayer FePc is lying flat on the Au(111) substrate, and the second monolayer FePc is tilted at -15° relative to the substrate plane along the nearest neighbour [101] direction with a lobe downward to the central hole of the unit cell in the first layer. The structural information obtained by first-principles calculations is in agreement with the experiment results. Furthermore, it is demonstrated that the electronic structures of FePc molecules in one-monolayer FePc/Au(111) system are perturbed significantly, while the electronic structures of FePc molecules in the second monolayer in two-monolayer FePc/Au(111) system remain almost unchanged due to the screening of the buffer layer on Au(111).展开更多
Background: Iron deficiency anemia in infants is the most common micronutrient deficiency worldwide. The main cause is low iron intake in the presence of accelerated physiologic growth rate. Objective: The current stu...Background: Iron deficiency anemia in infants is the most common micronutrient deficiency worldwide. The main cause is low iron intake in the presence of accelerated physiologic growth rate. Objective: The current study aimed at prospectively comparing the efficacy of iron III hydroxide polymaltose syrup (IPS) versus iron III hydroxide polymaltose drops (IPD) in treating iron deficiency among infants attending the hematology outpatient clinic. Our hypothesis was that IPS would be less effective possibly related to the difficulty of giving the medication. Methods: Participants diagnosed with iron deficiency anemia between 11-24 months were randomly assigned to receive either IPS or IPD for 3 months. The main outcome parameter was hemoglobin blood level, while the secondary outcome parameters were: 1) iron;2) ferritin;3) transferrin (i.e.?total iron binding capacity);4) mean corpuscular volume;and 5) red blood cell distribution width. Results: Out of the 104 recruited infants, 55 (52%) completed the study: 29 in the IPS group and26 inthe IPD group. There was no significant difference in the main outcome parameter at either 1 or 3 months of treatment: mean hemoglobin was 10.5 versus 10.7 g/dL within a 1 month treatment, P = 0.4;mean hemoglobin was 11.0 versus 11.1 g/dL within a 3 months of treatment, P = 0.59. Likewise, no significant differences were found with respect to the occurrence of side effects. Conclusion: Oral IPD and IPS are equally effective in treating iron deficiency anemia in infants aged 11 - 24 months.展开更多
Phosphinoylazidation of alkenes is a direct method to build nitrogen-and phosphorus-containing compounds from feed-stock chemicals.Notwithstanding the advances in other phosphinyl radical related difunctionalization o...Phosphinoylazidation of alkenes is a direct method to build nitrogen-and phosphorus-containing compounds from feed-stock chemicals.Notwithstanding the advances in other phosphinyl radical related difunctionalization of alkenes,catalytic phosphinoylazidation of alkenes has not yet been reported.Here,we describe the first iron-catalyzed intermolecular phosphinoylazidation of styrenes and unactivated alkenes.The method is practically useful and requires a relatively low loading of catalyst.Mechanistic studies confirmed the radical nature of the reaction and disclosed the unusually low activation energy 4.8 kcal/mol of radical azido group transfer from the azidyl iron(III)phthalocyanine species(PcFeulN3)to a benzylic radical.This work may help to clarify the mechanism of iron-catalyzed azidation,inspire other mechanism studies and spur further synthetic applications.展开更多
The complex [Fe(C14H14NO2)3]2H2O has been prepared by reaction of N-p-methylphenyl-3-hydroxy-2-ethyl-4-pyridinone with FeCl36H2O. A single-crystal X-ray study shows that the iron atoms lie in a trigonally distorted oc...The complex [Fe(C14H14NO2)3]2H2O has been prepared by reaction of N-p-methylphenyl-3-hydroxy-2-ethyl-4-pyridinone with FeCl36H2O. A single-crystal X-ray study shows that the iron atoms lie in a trigonally distorted octahedral environment coordinated to the hydroxy and ketone oxygen atoms of three ligands in the mer configuration Mr=773.57(C42H46N3O8Fe). The crystal is hexagonal with space group P31c; a=15.943(2), c=17.612(4)? V=3877.0(12)?, Z=4, Dc=1.325g/cm3, m=0.445mm-1, F(000)=1634, R=0.0446, wR= 0.1154 for 3085 reflections with I >2s(I). The bond lengths from iron to oxygens are 1.980(1)?for the ketone oxygens and 2.071(1)?for the hydroxy oxygens. The molecule exhibits the expected propeller shape, and the angle of the trigonal twist is 48.37. The dihedral angles are 0.5(2)?between chelate ring plane and pyridine ring plane and 71.31(7)?between pyridine ring plane and benzene ring plane. The solvent H2O(O(3) and O(4)) molecules are linked with O(2) and O(1) by hydrogen bonds with bond lengths 2.900(1) and 2.999(1)? respectively.展开更多
It has previously been demonstrated that phenanthroline-based ligands used to make gold metallotherapuetics have the ability to exhibit cytotoxicity when not coordinated to the metal center. In an effort to help asses...It has previously been demonstrated that phenanthroline-based ligands used to make gold metallotherapuetics have the ability to exhibit cytotoxicity when not coordinated to the metal center. In an effort to help assess the mechanism by which these ligands may cause tumor cell death, iron binding and removal experiments have been considered. The close linkage between cell proliferation and intracellular iron concentrations suggest that iron deprivation strategies may be a mechanism involved in inhibiting tumor cell growth. With the creation of iron (III) phen complexes, the iron binding abilities of three polypyridal ligands [1,10-phenanthroline (phen), 2,9-dimethyl-1, 10-phenanthroline (methylphen), and 2,9-di-sec-butyl-1, 10-phenanthroline (sec-butylphen)] can be tested via a competition reaction with a known iron chelator. Therefore, iron (III) complexes possessing all three ligands were synthesized. Initial mass spectrometric and infrared absorption data indicate that iron (III) tetrachloride complex ions with protonated phen ligands (RphenH+) were formed: [phenH][FeCl4], [methylphenH][FeCl4], [sec-butylphenH][FeCl4]. UV-vis spectroscopy was used to monitor the stability of the complex ions, and it was found that the sec-butylpheniron complex was more stable than the phen and methylphen analogues. This was based on the observation that free ligand was observed immediately upon the addition of EDTA to the [phenH][FeCl4] and [methylphenH] [FeCl4] complex ions.展开更多
Hydrotalcite-type anionic clays are a group of important materials used in adsorption processes, mainly for organic pollutants removal due the layered double hydroxide structure. The layer-interlayer interactions prov...Hydrotalcite-type anionic clays are a group of important materials used in adsorption processes, mainly for organic pollutants removal due the layered double hydroxide structure. The layer-interlayer interactions provide a structural memory even after dehydration and dehydroxylation process, since a very stable interlayer anions are part of material composition, like the carbonate one. A limited numbers of trivalent modifier cations can replace the aluminium cation due the ionic radii mismatch or oxidation state restrictions. Transition metal cations can replace the aluminium one in octahedral site of hydroxide lamellas in order to improve the adsorptive behaviors. In this work, we have investigate three compositions of carbonated magnesium-aluminium hydrotalcite with dif-ferent iron (III) contents through the co-precipitation method at pH 11 and aging step at 60°C for 6 hours. Thermal analysis was performed aiming the determination of the hydration water and hydroxyl amounts in dried precipitate samples, taking in account the results obtained for X-ray diffractometry, infrared spectroscopy, and nitrogen adsorption-desorption characterization for several thermally treated samples. All of synthesized samples showed high surface areas, even for high temperature of thermal treatment. The co-substitution with iron (III) reduced the temperature of dehydration and dehydroxylation process, but the co-substitution at 5 mol% provides other desirables characteristics, like a more amount of rhombohedral HDL phase and higher porosity, even after the thermal treatment at 500°C for 4 hours. This result makes that composition very applicable as a reusable adsorbent material in order to removal several types of micro-pollutant compounds in aqueous media.展开更多
A comparative thermal decomposition kinetic investigation on Fe(III) complexes of a antipyrine Schiff base ligand, 1,2-Bis(imino-4’-antipyrinyl)ethane (GA)), with varying counter anions viz. CIO4-, NO3-, SCN-, Cl-, a...A comparative thermal decomposition kinetic investigation on Fe(III) complexes of a antipyrine Schiff base ligand, 1,2-Bis(imino-4’-antipyrinyl)ethane (GA)), with varying counter anions viz. CIO4-, NO3-, SCN-, Cl-, and Br-, has been done by thermogravimetric analysis by using Coats-Redfern equation. The kinetic parameters like activation energy (E), pre-exponential factor (A) and entropy of activation (ΔS) were quantified. On comparing the various kinetic parameters, lower activation energy was observed in second stage as compared to first thermal decomposition stage. The same trend has been observed for pre-exponential factor (A) and entropy of activation (ΔS). The present results show that the starting materials having higher activation energy (E), are more stable than the intermediate products, however;the intermediate products possess well-ordered chemical structure due to their highly negative entropy of activation (ΔS) values. The present investigation proves that the counter anions play an important role on the thermal decomposition kinetics of the complexes.展开更多
Magnetorheological suspension based on 20 (v/V) % CoPc-iron composite particles dispersed in sili-cone oil have been obtained, which exhibited dynamic shear stress up to 2000Pa upon application of external magnetic fi...Magnetorheological suspension based on 20 (v/V) % CoPc-iron composite particles dispersed in sili-cone oil have been obtained, which exhibited dynamic shear stress up to 2000Pa upon application of external magnetic field at 1300 Oe. The response is faster than 0. 15 -with superior reversibility of changes in viscosity induced by external magnetic field at above 12. 5℃. Further, it was found that the MR fluid is in possession of long-term stability a-gainst sedimentation.展开更多
Cobalt-phthalocyanine/iron nanocomposite particles have been obtained using method of composite in situ, with the mixture of carbonyl iron and solution of cobalt ( Ⅱ ) - phthalocyanine (Co-Pc) ultrasonic dispersing i...Cobalt-phthalocyanine/iron nanocomposite particles have been obtained using method of composite in situ, with the mixture of carbonyl iron and solution of cobalt ( Ⅱ ) - phthalocyanine (Co-Pc) ultrasonic dispersing in N,N-dimethyl-formamide (DMF). Structure characterization of their inner and surface have relation with method of carbonyl iron joined in the mixture, contents of carbonyl iron and Co-Pc in the mixture of Co-Pc ultrasonic dispersing in DMF. With a method of composite in situ controlling reasonable experiment condition, it can be obtained that cobalt-phthalocyanine/iron nanocomposite particles has completely been covered with Co-Pc, they had structure of Chinese gooseberry in inner and mere made up of almost regular spherical shape and the average diameter is 1. 4 μm.展开更多
基金financial support from the National Key Research and Development Program of China(2020YFA0710202)the National Natural Science Foundation of China(21978043,U1662130)+1 种基金Inner Mongolia University of Technology Scientific Research Initial Funding(DC2300001240)Talent Introduction Support Project of Inner Mongolia(DC2300001426).
文摘As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range.
基金supported by the Industrial Research Project of Shaanxi Science and Technology Department(2014K08-29)Science and Technology Plan Project of Xi’an(CXY1511(7))Scientific Research Foundation of Northwest University~~
文摘We have developed an iron(III) phthalocyanine chloride‐catalyzed oxidation–aromatization ofα,β‐unsaturated ketones with hydrazine hydrate. Various 3,5‐disubstituted 1H‐pyrazoles were obtained in good to excellent yields. This method offers several advantages, including room‐tem‐perature conditions, short reaction time, high yields, simple work‐up procedure, and use of air as an oxidant. The catalyst can be recovered and reused five times without loss of activity.
文摘A precise understanding of the redox chemistry of Nm-Mn+(like N4-Fe^(2+))systems is essential for fundamental studies and rational design of Nm-Mn+-based electrocatalysts for the oxygen reduction reaction(ORR).Herein,three different iron phthalocyanines(FePcs)adsorbed on carbon nanotubes((NH2)4FePc@CNTs,(t-Bu)4FePc@CNTs,and FePc@CNTs)were evaluated to demonstrate the effect of the electron donating power of the substituents on the Fe^(3+)/Fe^(2+)redox potential of FePc@CNTs and the role of these composites as ORR mediators in alkaline media.The Fe^(3+)/Fe^(2+)redox potential of the FePcs was found to shift towards the cathodic region upon substitution with electron-donating groups.This up-field shift in the eg-orbital leads to a lower overlap between the onset potential of the Fe^(3+)/Fe^(2+)redox couple and that of the ORR,and thus,the ORR activity decreased in the following order based on the substitution of FePc:-H>-t-Bu>-NH2.
基金Funded by the National Natural Science Foundation of China(No.61377092)
文摘A chemical system for facile and accurate detection of 2,4-dichlorophenol (DCP) via iron (Ⅱ) phthalocyanine (Fe(Ⅱ)Pc) catalyzed chromogenic reaction is reported for the first time. In this system, DCP could be oxidized by dioxygen with the catalysis of Fe(Ⅱ)Pc and then coupled with 4-aminoantipyrine (4-AAP) to generate pink antipyrilquinoneimine dye. Control experiments showed that the addition of ethanol could obviously enhance the catalytic activity of heterogeneous Fe(Ⅱ)Pc catalysts because of the partial dissolution of Fe(II)Pc nanocubes, which was confirmed by the SEM analysis. On the basis of the detection results of DCP in the range from 2×10^-5 to 9×10^-4 mol/L, we obtained a regression equation (A = 0.187 5 + 0.01 209C (R2=-0.995 6)) with the detection limit (3σ) of 3.26×10^-6 mol/L, which could be successfully used in detecting the real samples.
基金Funded by the National Natural Science Foundation of China(Nos.61377092 and 51303115)
文摘A new fi ber optic sensor based on the oxidation of 2,4-dichlorophenol(DCP) catalyzed by iron(II) phthalocyanine(Fe(II)Pc) was developed for the determination of DCP. The optical oxygen sensing fi lm containing fl uorescence indicator Ru(bpy)3Cl2 was used to detect the consumption of oxygen in solution. Moreover, a lock-in amplifier was used to determine the lifetime of the sensor head by detecting its phase delay change. The results reveal that the sensor has a linear detection range of 1.0×10^-6- 9.0×10^-5 mol/L and a response time of 5 min. The sensor also has high selectivity, good repeatability and stability. It can be used effectively to determine DCP concentration in real samples.
基金funded by an Australian Research Council LIEF grant(LE120100026)supported by the National Natural Science Foundation of China(U19A2017)
文摘Oxygen reduction reaction(ORR)catalysts play a critical role in energy storage and conversion devices and have been attracted enormous interests,and however,it remains challenging to develop highly active cheap catalysts in a simple and green route.Inspired by the heme-copper oxidases(HOCs),in which the ORR active center is originated from the incorporation of Fe-N_(4)with copper atom,we here developed a fine manganese oxide nanosheets(MnO_(x)NSs)integrated with iron phthalocyanine(FePc)anchored on highly conductive graphene(MnO_(x)/FePc-G)through a green route only involve ethanol as the reagent.The bio-inspired catalyst MnO_(x)/Fe Pc-G demonstrated high ORR activity with a half-wave potential(E_(1/2))of 0.887 V,about 57 mV more positive than that of Pt/C.And the current density(j)at 0.9 V is about 1.9 m A cm^(-2),which is three times of Pt/C and FePc-G.More importantly,the bio-inspired systems show superior stability in comparison to commercial Pt/C,showing a potential of 0.863 V to deliver a j of 3 mA cm^(-2)after 18000 s polarization,about 80 mV higher than that of 0.783 V for Pt/C.The high activity is contributed by the integration of the Fe Pc and MnO_(x)NSs that plays the role to assist the cleavage of the O_(2)bond.Our approach provides a new evidence to develop highly efficient ORR catalysts through imitate the naturally involved systems through a simple route.
基金supported by the Australian Research Council Discovery Project Funding Scheme(project number:DP180100568)
文摘Nanoclusters(NCs)have been demonstrated of outstanding performance in electrochemical energy storage and conversion technologies due to their strong quantum confinement effects and strong interaction with supports.Here,we developed a class of ultrafine metal-oxide(MOx,M=Fe,Co and Ni)NCs incorporated with iron phthalocyanine(FePc),MOx/FePc-G,supported on graphene as high-performance catalysts for oxygen reduction reaction(ORR),oxygen evolution reaction(OER),and carbon dioxide reduction(CO2RR).The high activities for ORR and OER are attributed to the electron donation and accepting ability of the highly redox active of FePc-G that could tune the properties of MOx.The FeOx/FePc-G exhibits an extremely positive half-wave potential(E1/2)of 0.888 and 0.610 V for ORR in alkaline and neutral conditions,respectively,which is around 60 mV more positive than that of Pt/C.And NiOx/FePc-G shows similar OER activity with the state-of-the-art catalysts,Ir/C,and better performance than NiFeO NCs supported on graphene.Remarkably,the CoOx/FePc-G and NiOx/FePc-G show high activity and selectivity to reduce CO2 into CO with a low onset potential of-0.22 V(overpotential is 0.11 V).
文摘Oxygen evolution causes a high inner pressure during charge and overcharge for MH/Ni battery, and an inappropriate eliminating way of the oxygen in the battery results in accumulation of heat. This is the main obstacle to develop and apply high capability and high power battery. How to reduce the ratio of the chemical catalysis rate to the electric catalysis rate in MH/Ni battery is considered as an urgent question. Iron phthalocyanine(FePc) was chosen as an electrochemical catalyst. The batteries were prepared by adding iron phthalocyanine with different dosages. The inner pressure, the capacity attenuation, the discharge voltage and capacity at high current of these three batteries were compared. The battery with 1 mg FePc in the negative electrode exhibits a good performance.
基金supported by the National Defense Science and Technology Innovation Zone Project (Nos. 17H863-05-ZT-002-040-001 and 18-H863-05-ZT-002-01301
文摘Improving the performance of anode is a crucial step for increasing output power of marine sediment microbial fuel cells(MSMFCs)to drive marine monitor to work for a long term on the ocean floor.A pyrolyzed iron phthalocyanine modified multi-walled carbon nanotubes composite(FePc/MWCNTs)has been utilized as a novel nodified anode in the MSMFC.Its structure of the composite modified anode and electrochemical performance have been investigated respectively in the paper.There is a substantial improvement in electron-transfer efficiency from the bacteria biofilm to the modified anode via the pyrolyzed FePc/MWCNTs composite based on their cyclic voltammetry(CV)and Tafel curves.The electron transfer kinetic activity of the FePc/MWCNTs-modified anode is 1.86 times higher than of the unmodified anode.The maximum power density of the modified MSMFC was 572.3±14 m W m^-2,which is 2.6 times larger than the unmodified one(218.3±11 m W m^-2).The anodic structure and cell scale would be greatly minimized to obtain the same output power by the modified MSMFC,so that it will make the MSMFC to be easily deployed on the remote ocean floor.Therefore,it would have a great significance for us to design a novel and renewable long term power source.Finally,a novel molecular synergetic mechanism is proposed to elucidate its excellent electrochemical performance.
基金supported by the National Natural Science Foundation of China (Grant No.10774176)the National Basic Research Program of China (Grant Nos.2006CB806202 and 2006CB921305)the Shanghai Supercomputing Center,Chinese Academy of Sciences
文摘We investigate the electronic structures of one and two monolayer iron phthalocyanine (FePc) molecules on Au(111) surfaces. The first monolayer FePc is lying flat on the Au(111) substrate, and the second monolayer FePc is tilted at -15° relative to the substrate plane along the nearest neighbour [101] direction with a lobe downward to the central hole of the unit cell in the first layer. The structural information obtained by first-principles calculations is in agreement with the experiment results. Furthermore, it is demonstrated that the electronic structures of FePc molecules in one-monolayer FePc/Au(111) system are perturbed significantly, while the electronic structures of FePc molecules in the second monolayer in two-monolayer FePc/Au(111) system remain almost unchanged due to the screening of the buffer layer on Au(111).
文摘Background: Iron deficiency anemia in infants is the most common micronutrient deficiency worldwide. The main cause is low iron intake in the presence of accelerated physiologic growth rate. Objective: The current study aimed at prospectively comparing the efficacy of iron III hydroxide polymaltose syrup (IPS) versus iron III hydroxide polymaltose drops (IPD) in treating iron deficiency among infants attending the hematology outpatient clinic. Our hypothesis was that IPS would be less effective possibly related to the difficulty of giving the medication. Methods: Participants diagnosed with iron deficiency anemia between 11-24 months were randomly assigned to receive either IPS or IPD for 3 months. The main outcome parameter was hemoglobin blood level, while the secondary outcome parameters were: 1) iron;2) ferritin;3) transferrin (i.e.?total iron binding capacity);4) mean corpuscular volume;and 5) red blood cell distribution width. Results: Out of the 104 recruited infants, 55 (52%) completed the study: 29 in the IPS group and26 inthe IPD group. There was no significant difference in the main outcome parameter at either 1 or 3 months of treatment: mean hemoglobin was 10.5 versus 10.7 g/dL within a 1 month treatment, P = 0.4;mean hemoglobin was 11.0 versus 11.1 g/dL within a 3 months of treatment, P = 0.59. Likewise, no significant differences were found with respect to the occurrence of side effects. Conclusion: Oral IPD and IPS are equally effective in treating iron deficiency anemia in infants aged 11 - 24 months.
文摘Phosphinoylazidation of alkenes is a direct method to build nitrogen-and phosphorus-containing compounds from feed-stock chemicals.Notwithstanding the advances in other phosphinyl radical related difunctionalization of alkenes,catalytic phosphinoylazidation of alkenes has not yet been reported.Here,we describe the first iron-catalyzed intermolecular phosphinoylazidation of styrenes and unactivated alkenes.The method is practically useful and requires a relatively low loading of catalyst.Mechanistic studies confirmed the radical nature of the reaction and disclosed the unusually low activation energy 4.8 kcal/mol of radical azido group transfer from the azidyl iron(III)phthalocyanine species(PcFeulN3)to a benzylic radical.This work may help to clarify the mechanism of iron-catalyzed azidation,inspire other mechanism studies and spur further synthetic applications.
基金the Foundation of Returning Personal from Overseas Study of Jiangsu Education Department.
文摘The complex [Fe(C14H14NO2)3]2H2O has been prepared by reaction of N-p-methylphenyl-3-hydroxy-2-ethyl-4-pyridinone with FeCl36H2O. A single-crystal X-ray study shows that the iron atoms lie in a trigonally distorted octahedral environment coordinated to the hydroxy and ketone oxygen atoms of three ligands in the mer configuration Mr=773.57(C42H46N3O8Fe). The crystal is hexagonal with space group P31c; a=15.943(2), c=17.612(4)? V=3877.0(12)?, Z=4, Dc=1.325g/cm3, m=0.445mm-1, F(000)=1634, R=0.0446, wR= 0.1154 for 3085 reflections with I >2s(I). The bond lengths from iron to oxygens are 1.980(1)?for the ketone oxygens and 2.071(1)?for the hydroxy oxygens. The molecule exhibits the expected propeller shape, and the angle of the trigonal twist is 48.37. The dihedral angles are 0.5(2)?between chelate ring plane and pyridine ring plane and 71.31(7)?between pyridine ring plane and benzene ring plane. The solvent H2O(O(3) and O(4)) molecules are linked with O(2) and O(1) by hydrogen bonds with bond lengths 2.900(1) and 2.999(1)? respectively.
文摘It has previously been demonstrated that phenanthroline-based ligands used to make gold metallotherapuetics have the ability to exhibit cytotoxicity when not coordinated to the metal center. In an effort to help assess the mechanism by which these ligands may cause tumor cell death, iron binding and removal experiments have been considered. The close linkage between cell proliferation and intracellular iron concentrations suggest that iron deprivation strategies may be a mechanism involved in inhibiting tumor cell growth. With the creation of iron (III) phen complexes, the iron binding abilities of three polypyridal ligands [1,10-phenanthroline (phen), 2,9-dimethyl-1, 10-phenanthroline (methylphen), and 2,9-di-sec-butyl-1, 10-phenanthroline (sec-butylphen)] can be tested via a competition reaction with a known iron chelator. Therefore, iron (III) complexes possessing all three ligands were synthesized. Initial mass spectrometric and infrared absorption data indicate that iron (III) tetrachloride complex ions with protonated phen ligands (RphenH+) were formed: [phenH][FeCl4], [methylphenH][FeCl4], [sec-butylphenH][FeCl4]. UV-vis spectroscopy was used to monitor the stability of the complex ions, and it was found that the sec-butylpheniron complex was more stable than the phen and methylphen analogues. This was based on the observation that free ligand was observed immediately upon the addition of EDTA to the [phenH][FeCl4] and [methylphenH] [FeCl4] complex ions.
文摘Hydrotalcite-type anionic clays are a group of important materials used in adsorption processes, mainly for organic pollutants removal due the layered double hydroxide structure. The layer-interlayer interactions provide a structural memory even after dehydration and dehydroxylation process, since a very stable interlayer anions are part of material composition, like the carbonate one. A limited numbers of trivalent modifier cations can replace the aluminium cation due the ionic radii mismatch or oxidation state restrictions. Transition metal cations can replace the aluminium one in octahedral site of hydroxide lamellas in order to improve the adsorptive behaviors. In this work, we have investigate three compositions of carbonated magnesium-aluminium hydrotalcite with dif-ferent iron (III) contents through the co-precipitation method at pH 11 and aging step at 60°C for 6 hours. Thermal analysis was performed aiming the determination of the hydration water and hydroxyl amounts in dried precipitate samples, taking in account the results obtained for X-ray diffractometry, infrared spectroscopy, and nitrogen adsorption-desorption characterization for several thermally treated samples. All of synthesized samples showed high surface areas, even for high temperature of thermal treatment. The co-substitution with iron (III) reduced the temperature of dehydration and dehydroxylation process, but the co-substitution at 5 mol% provides other desirables characteristics, like a more amount of rhombohedral HDL phase and higher porosity, even after the thermal treatment at 500°C for 4 hours. This result makes that composition very applicable as a reusable adsorbent material in order to removal several types of micro-pollutant compounds in aqueous media.
文摘A comparative thermal decomposition kinetic investigation on Fe(III) complexes of a antipyrine Schiff base ligand, 1,2-Bis(imino-4’-antipyrinyl)ethane (GA)), with varying counter anions viz. CIO4-, NO3-, SCN-, Cl-, and Br-, has been done by thermogravimetric analysis by using Coats-Redfern equation. The kinetic parameters like activation energy (E), pre-exponential factor (A) and entropy of activation (ΔS) were quantified. On comparing the various kinetic parameters, lower activation energy was observed in second stage as compared to first thermal decomposition stage. The same trend has been observed for pre-exponential factor (A) and entropy of activation (ΔS). The present results show that the starting materials having higher activation energy (E), are more stable than the intermediate products, however;the intermediate products possess well-ordered chemical structure due to their highly negative entropy of activation (ΔS) values. The present investigation proves that the counter anions play an important role on the thermal decomposition kinetics of the complexes.
基金Chinese National Natural Science Foundation (No. 29674021) Hubei Natural Science Foundation(NO. 97J086).
文摘Magnetorheological suspension based on 20 (v/V) % CoPc-iron composite particles dispersed in sili-cone oil have been obtained, which exhibited dynamic shear stress up to 2000Pa upon application of external magnetic field at 1300 Oe. The response is faster than 0. 15 -with superior reversibility of changes in viscosity induced by external magnetic field at above 12. 5℃. Further, it was found that the MR fluid is in possession of long-term stability a-gainst sedimentation.
基金Funded by Chinese National Natural Science Foundation (No. 29904005), Key Foundation (No. 50038010) and Open Foundation from State Key Lab.of Advanced Technology for Materials Synthesis and Processing.
文摘Cobalt-phthalocyanine/iron nanocomposite particles have been obtained using method of composite in situ, with the mixture of carbonyl iron and solution of cobalt ( Ⅱ ) - phthalocyanine (Co-Pc) ultrasonic dispersing in N,N-dimethyl-formamide (DMF). Structure characterization of their inner and surface have relation with method of carbonyl iron joined in the mixture, contents of carbonyl iron and Co-Pc in the mixture of Co-Pc ultrasonic dispersing in DMF. With a method of composite in situ controlling reasonable experiment condition, it can be obtained that cobalt-phthalocyanine/iron nanocomposite particles has completely been covered with Co-Pc, they had structure of Chinese gooseberry in inner and mere made up of almost regular spherical shape and the average diameter is 1. 4 μm.