Biomass,recognized as renewable green coal,is pivotal for energy conservation,emission reduction,and dualcarbon objectives.Chemical looping gasification,an innovative technology,aims to enhance biomass utilization eff...Biomass,recognized as renewable green coal,is pivotal for energy conservation,emission reduction,and dualcarbon objectives.Chemical looping gasification,an innovative technology,aims to enhance biomass utilization efficiency.Using metal oxides as oxygen carriers regulates the oxygen-to-fuel ratio to optimize synthesis product yields.This review examines various oxygen carriers and their roles in chemical looping biomass gasification,including natural iron ore types,industrial by-products,cerium oxide-based carriers,and core-shell structures.The catalytic,kinetic,and phase transfer properties of iron-based oxygen carriers are analyzed,and their catalytic cracking capabilities are explored.Molecular interactions are elucidated and system performance is optimized by providing insights into chemical looping reaction mechanisms and strategies to improve carrier efficiency,along with discussing advanced techniques such as density functional theory(DFT)and reactive force field(ReaxFF)molecular dynamics(MD).This paper serves as a roadmap for advancing chemical looping gasification towards sustainable energy goals.展开更多
How to ensure the reliable operation of the complex and huge electrical system composed of a large number of electrical equipment in iron and steel enterprises?Combined with working experience,the author introduces fo...How to ensure the reliable operation of the complex and huge electrical system composed of a large number of electrical equipment in iron and steel enterprises?Combined with working experience,the author introduces four main factors affecting the normal operation of equipment,analyzes five main problems existing in the operation and management of electrical equipment,and puts forward corresponding improvement measures,so as to improve the management level of electrical equipment in iron and steel enterprises.展开更多
This paper establishes a model for the production cost of iron and steel enterprise.The variation rule of the production cost versus the iron/steel ratio for two cases, namely,fixed steel production and a fixed amount...This paper establishes a model for the production cost of iron and steel enterprise.The variation rule of the production cost versus the iron/steel ratio for two cases, namely,fixed steel production and a fixed amount of molten iron,is analyzed,and the concept of a steel scrap threshold price is proposed.According to the analysis results,when the steel scrap unit price exceeds the steel scrap threshold price, an increase in the iron/steel ratio can reduce the production cost,and vice versa.When the gap between the steel scrap unit price and the steel scrap threshold price is relatively large, the impact of the iron/steel ratio on the production cost is more prominent.According to the calculation example,when steel production is fixed (284 358 t/month)and the steel scrap unit price is 263.2 yuan/t more than the steel scrap threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 750 000 yuan (2.63 yuan/t).When the amount of molten iron is fixed (270 425 t/month)and the steel scrap unit price is 140.7 yuan/t more than the threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 430 000 yuan (1.5 yuan/t).The results indicate that iron and steel enterprise should adjust the production strategy in time when the scrap price fluctuates, and then the production cost will be reduced.展开更多
In order to solve internal logistics problems of iron and steel works,such as low transportation efficiency of vehicles and high transportation cost,the production process and traditional transportation style of iron ...In order to solve internal logistics problems of iron and steel works,such as low transportation efficiency of vehicles and high transportation cost,the production process and traditional transportation style of iron and steel works were introduced.The internal transport tasks of iron and steel works were grouped based on cluster analysis according to demand time of the transportation.An improved vehicle scheduling model of semi-trailer swap transport among loading nodes and unloading nodes in one task group was set up.The algorithm was designed to solve the vehicle routing problem with simultaneous pick-up and delivery(VRPSPD) problem based on semi-trailer swap transport.A solving program was written by MATLAB software and the method to figure out the optimal path of each grouping was obtained.The dropping and pulling transportation plan of the tractor was designed.And an example of semi-trailer swap transport in iron and steel works was given.The results indicate that semi-trailer swap transport can decrease the numbers of vehicles and drivers by 54.5% and 88.6% respectively compared with decentralized scheduling in iron and steel works,and the total distance traveled reduces by 43.5%.The semi-trailer swap transport can help the iron and steel works develop the production in intension.展开更多
The abnormal corrosion of hot iron ladles was investigated.The performance,the composition and the structure of bricks for hot iron ladles were analyzed.The results show that(1)compared with the alumina-silicon carbid...The abnormal corrosion of hot iron ladles was investigated.The performance,the composition and the structure of bricks for hot iron ladles were analyzed.The results show that(1)compared with the alumina-silicon carbide-carbon bricks for the ladle bottom,those for the ladle wall have more pyrophyllite and the Al2O3 content of 36.32 mass%;their bulk density,apparent porosity and cold compressive strength are lower than the requirement of industry standard;they have poor anti-oxidation performance and are oxidized to form a porous layer during service,which loosens the brick lining structure thus leading to fracture,local wear and structural damage of bricks;(2)without preheating,steel scraps are not completely melted,resulting in slag or steel attachment at the mouth or the bottom of ladles thus increasing damage of ladles;(3)and the residual bricks react with the attached slag to form low melting point phases affecting their hot properties.The refractories for the lining of hot iron ladles must be improved in combination with process changes,not entirely by raw materials replacement to reduce costs.展开更多
The predictability of hardness of the heat affected zone (HAZ) in aluminum weldments cooled in palm oil, based on hardness of similarly cooled mild steel and cast iron weldments has been ascertained. The general mode...The predictability of hardness of the heat affected zone (HAZ) in aluminum weldments cooled in palm oil, based on hardness of similarly cooled mild steel and cast iron weldments has been ascertained. The general model: α = 1.2769? indicates that HAZ hardness of aluminium weldment is dependant on the ratio of product to sum of HAZ hardness of mild steel and cast iron weldments cooled in palm oil under the same conditions. The maximum deviations of the model-predicted HAZ hardness values α, μ and β from the corresponding experimental values αexp, μexp and βexp were less than 0.04% indicating the reliability and validity of the model.展开更多
The necessity of establishing gas protection station in iron and steel works is demonstrated,issues of strengthening the management of gas safety protection,studying new technology of gas protection,adapting to the ne...The necessity of establishing gas protection station in iron and steel works is demonstrated,issues of strengthening the management of gas safety protection,studying new technology of gas protection,adapting to the needs of modernization and building large scale and intelligent iron and steel works are discussed.Relevant sug-gestions are also put forward.展开更多
An overview of a severe kind of environmentally-assisted cracking-stress corrosion cracking (SCC) of pressure vessel steel (PVS),such as stainless steel 304, alloy 600,690 and other nickel-based alloys in subcritical ...An overview of a severe kind of environmentally-assisted cracking-stress corrosion cracking (SCC) of pressure vessel steel (PVS),such as stainless steel 304, alloy 600,690 and other nickel-based alloys in subcritical (~300 ℃) aqueous environment was given. The mechanisms of SCC of metals under this inclement surrounding were briefly generalized. Herein,some pragmatic solutions to mitigate the SCC susceptibility and retard its propagation were presented. The titanium and cerium-based inhibitors addition countermeasure was highlighted.展开更多
China's economic growth is heavily influenced by exports, while reconciling environmental regulation and economic growth requires handling the relationship between environmental regulation and industrial competitiven...China's economic growth is heavily influenced by exports, while reconciling environmental regulation and economic growth requires handling the relationship between environmental regulation and industrial competitiveness well. The effects of environmental regulation on industrial competitiveness are largely subject to the institutional design of environmental regulation. Despite numerous studies on the relationship between environmental regulation and industrial competitiveness, a consensus has yet to be reached. Aside from differences in research methodology, these studies failed to give sufficient consideration to the impact of environmental regulation on industrial competitiveness. Such effects can be negative or positive depending on the design of environmental regulatory policy. This paper has investigated the relationship between environmental regulation and the competitiveness of China's iron and steel industry and discovered that tighter environmental regulation does not diminish the competitiveness of the iron and steel industry since the policy design of environmental regulation accommodates the tolerance of advanced production capacity and includes a reasonable cost sharing mechanism. This discovery is of important reference for China to develop rational policy design to balance the relationship between environmental regulation and industrial competitiveness.展开更多
It is well known that the magnetic properties such as the Curie temperature Tmag <sub>C and the mean magnetic moment β of ordered compounds have different values from those of the disordered solutions. For inst...It is well known that the magnetic properties such as the Curie temperature Tmag <sub>C and the mean magnetic moment β of ordered compounds have different values from those of the disordered solutions. For instance, both Tmag c and β of the Ni3Pt (L12) and NiPt (L10) and Tmag <sub>c of the CoPt (L10) and CoPt3 (L12) ordered compounds are strongly depressed due to the ordering compared with those of the metastable disordered Ni-Pt and Co-Pt alloys. On the other hand, the γ’-FeNi3 (L12) and the α’-FeCo (B2) ordered compounds have higher Tmag <sub>c and β values comparing with the disordered solution phases, γ (A1) and α (A2), respectively. In consequence, the stability of the ordered phase is depressed or enhanced due to the interaction between the chemical and magnetic ordering caused by the decrease or increase of Tmag <sub>c and β values. The purpose of this study is to investigate the effect of the interaction between the chemical and the magnetic ordering on the phase equilibria in the Fe-X(X=Al, Co, Ni, Rh, Si) binary systems.The Gibbs energy of the α(A2), γ(A1) and liquid phases is described by a sub-regular solution approximation. The ordering contribution to the Gibbs energy ,ΔGorder <sub>m, and deviations of magnetic properties, ΔTmag <sub>c and Δβ, of the ordered compounds, FeAl (B2), Fe3Al (D03), FeCo (B2), FeRh (B2), FeSi (B2), Fe3Si (D03) and FeNi3 (L12) is introduced by the split compound energy formalism. Effect of the interaction between the chemical ordering, B2, D03 and L12 and the magnetic ordering on the phase equilibria will be discussed according to the calculated phase diagrams of the Fe-X binary systems.展开更多
Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecor...Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecorrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosionecorrosion problems. High velocity oxy-fuel(HVOF)spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology(RSM) was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.展开更多
TiC based steel bonded carbides with the addition of nano TiN were prepared by vacuum sintering techniques.The microstructure was investigated using scanning electron microscopy(SEM) and transmission electron micros...TiC based steel bonded carbides with the addition of nano TiN were prepared by vacuum sintering techniques.The microstructure was investigated using scanning electron microscopy(SEM) and transmission electron microscopy(TEM),and the mechanical properties,such as bending strength,impact toughness,hardness,and density,were measured.The results indicate that the grain size becomes small and there is uniformity in the steel bonded carbide with nano addition;several smaller carbide particles are also found to be inlaid in the rim of the larger carbide grains and prevent the coalescence of TiC grains.The smaller and larger carbide grains joint firmly,and then the reduction of the average size of the grains leads to the increase in the mechanical properties of the steel bonded carbides with nano addition.But the mechanical properties do not increase monotonously with an increase in nano addition.When the nano TiN addition accounts for 6-8 wt.% of the amount of steel bonded carbides,the mechanical properties reach the maximum values and then decrease with further increase in nano TiN addition.展开更多
The feasibility of steel slag used as an iron fertilizer was studied in a pot experiment with corn. Slag alone or acidified slag was added to two Fe-deficient calcareous soils at different rates. Results showed that m...The feasibility of steel slag used as an iron fertilizer was studied in a pot experiment with corn. Slag alone or acidified slag was added to two Fe-deficient calcareous soils at different rates. Results showed that moderate rates (10 and 20 g kg-1) of slag or acidified slag substantially increased corn dry matter yield and Fe uptake. Application of steel slag increased the residual concentration of ammonium bicarbonate-diethylenetriamine pentaacetic acid (AB-DTPA) extractable Fe in the soils. The increase of extractable Fe was usually proportional to the application rate, and enhanced by the acidification of slag. Steel slag appeared to be a promising and inexpensive source of Fe to alleviate crop Fe chlorosis in Fe-deficient calcareous soils.展开更多
Recently procured outstanding achievements in iron and steel industry in China are presented by data or facts in steel output, energy consumption, technical and economical indicators and advanced technologies that are...Recently procured outstanding achievements in iron and steel industry in China are presented by data or facts in steel output, energy consumption, technical and economical indicators and advanced technologies that are being adopted. The latest achievements in refractonries for this biggest user industry are reviewed, covering new refractories for CDQ coke oven, BF hearth, AOD Lining, long life tundish, SEN for clean steel making and regenerative reheating furnace . The reciprocal relationship is obvious that the rapid development of iron and steel industry has given an impetus to the advance of refractories industry, which in return has contributed greatly to the former.展开更多
In the past 25 years in China, to meet with the rapid increase in steel production accompanied by adoption of advanced metallurgical technologies, there has been fast development of China' s refractories industry in ...In the past 25 years in China, to meet with the rapid increase in steel production accompanied by adoption of advanced metallurgical technologies, there has been fast development of China' s refractories industry in production capacity, in quality improvement and in development of new products. Sophisticated high performance refractory materials mainly based on our rich reserves of magncsite, bauxite and flake graphite have been developed, such as carbon-bonded products, high purity oxide products, bauxite-based low creep and high strength high alumina bricks and LC, ULC and ZC castables. They have been used in blast furnaces, BOFs, EAFs, secondary refining and continuous casting with considerable improvement in service pecformance.展开更多
The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors af...The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors affecting transition zone quality.By controlling process parameter and flux adding during casting,high quality roll collar was obtained.The cause,why in the casting of HSS part,segregation appears easily,was analyzed and the countermeasure eliminating segregation was put forward,the measure eliminating heat treatment crackling was also put forward.展开更多
High-chromium white cast iron (HCWCI) is one of the most widely used engineering materials in the mining and cement industries. However, in some components, such as the pulverizer plates of ash mills, the poor machi...High-chromium white cast iron (HCWCI) is one of the most widely used engineering materials in the mining and cement industries. However, in some components, such as the pulverizer plates of ash mills, the poor machinability of HCWCI creates difficulties. The bimetal casting technique is a suitable method for improving the machinability of HCWCI by joining an easily machined layer of plain carbon steel (PCS) to its hard part. In this study, the possibility of PCS/HCWCI bimetal casting was investigated using sand casting. The investigation was conducted by optical and electron microscopy and non-destructive, impact toughness, and tensile tests. The hardness and chemical composition profiles on both sides of the interface were plotted in this study. The results indicated that a conventional and low-cost casting technique could be a reliable method for producing PCSYdCWCI bimetal. The interfacial microstructure comprised two distinct lay- ers: a very fine, partially spheroidized pearlite layer and a coarse full pearlite layer. Moreover, characterization of the microstructure revealed that the interface was free of defects.展开更多
The addition of high Ti(>0.1%) in microalloyed bainitic high strength steel was designed, and the precipitation morphology of steels with different Ti, Nb, and V contents was studied by utilizing transmission ele...The addition of high Ti(>0.1%) in microalloyed bainitic high strength steel was designed, and the precipitation morphology of steels with different Ti, Nb, and V contents was studied by utilizing transmission electron microscopy(TEM). Based on the classical nucleation-crystal growth theory and the Johnson-Mehl-Avrami equation, the precipitation thermodynamic and kinetic model of second phase particles in austenite was established in the form of(Nbx,Vy,Tiz)C, and the complex precipitation mechanism of second phase particles was emphatically studied. The experimental results show that the complex precipitation particles could be divided into two categories: the coarser particles with about 100 nm grain size and the independent complex precipitation particles in the form of(Nb,V,Ti)C with 35-50 nm grain size. The latter has a better precipitation strengthening effect, and the calculated PTT curve shows a typical "C" shape. When the deformed storage energy is 3 820 J?mol-1, the fastest precipitation temperature of calculated PTT curve is 925 °C, and the calculated result is essentially consistent with experimental values. The increase of Ti content increased the nose point temperature and expanded the range of fastest precipitation temperature.展开更多
With unique physical properties, chemical properties, and biological effects, magnetic nanomaterials are important functional materials in many fields. In the past decades, iron based magnetic nanomaterials have attra...With unique physical properties, chemical properties, and biological effects, magnetic nanomaterials are important functional materials in many fields. In the past decades, iron based magnetic nanomaterials have attracted much attention in the biomedicine field due to their superior magnetic properties and great potential in biomedical applications. In particular, magnetic iron oxide nanoparticles(MIONPs) have been playing a crucial role in the biomedicine field because of their diagnostic and therapeutic functions. Meanwhile, MIONPs are benign, low toxic, biocompatible, and biodegradable, so they are the only inorganic magnetic nanomaterials approved by the U.S. Food and Drug Administration(FDA) for clinical use at present. In this review, we mainly introduce the progress in the preparation of iron based magnetic nanomaterials for biomedical applications, including pure iron nanoparticles, iron-based alloy nanoparticles, and MIONPs, with a focus on MIONPs. Also, we summarize the preparation methods of MIONPs and point out the importance of their developments.展开更多
Electrolytic hardening process was developed in USSR in the 1950s. The process was developed but was not commercially exploited. There is no evidence of work done on this process in India. The author has done this ori...Electrolytic hardening process was developed in USSR in the 1950s. The process was developed but was not commercially exploited. There is no evidence of work done on this process in India. The author has done this original work applied to different materials like steel, cast iron and aluminum-bronze. This paper gives details of microstructural transformations along with hardness value achieved. There is vital scope for this process to become viable for surface hardening and selective hardening of small components.展开更多
基金supported by the National Natural Science Foundation of China(52160013,51768054)Inner Mongolia Autonomous Region“Grassland Talent”Science Fund Program(CYY012057)+2 种基金Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT22062)Inner Mongolia Natural Science Foundation(2021LHMS05026)Inner Mongolia University Research Program(2023RCTD018,2023YXX8023,2024YXX5027,2023YXX8023,2024YXX5027).
文摘Biomass,recognized as renewable green coal,is pivotal for energy conservation,emission reduction,and dualcarbon objectives.Chemical looping gasification,an innovative technology,aims to enhance biomass utilization efficiency.Using metal oxides as oxygen carriers regulates the oxygen-to-fuel ratio to optimize synthesis product yields.This review examines various oxygen carriers and their roles in chemical looping biomass gasification,including natural iron ore types,industrial by-products,cerium oxide-based carriers,and core-shell structures.The catalytic,kinetic,and phase transfer properties of iron-based oxygen carriers are analyzed,and their catalytic cracking capabilities are explored.Molecular interactions are elucidated and system performance is optimized by providing insights into chemical looping reaction mechanisms and strategies to improve carrier efficiency,along with discussing advanced techniques such as density functional theory(DFT)and reactive force field(ReaxFF)molecular dynamics(MD).This paper serves as a roadmap for advancing chemical looping gasification towards sustainable energy goals.
文摘How to ensure the reliable operation of the complex and huge electrical system composed of a large number of electrical equipment in iron and steel enterprises?Combined with working experience,the author introduces four main factors affecting the normal operation of equipment,analyzes five main problems existing in the operation and management of electrical equipment,and puts forward corresponding improvement measures,so as to improve the management level of electrical equipment in iron and steel enterprises.
基金The National Key Technology R&D Program during the 12th Five-Year Plan Period(No.2012BAF10B05)
文摘This paper establishes a model for the production cost of iron and steel enterprise.The variation rule of the production cost versus the iron/steel ratio for two cases, namely,fixed steel production and a fixed amount of molten iron,is analyzed,and the concept of a steel scrap threshold price is proposed.According to the analysis results,when the steel scrap unit price exceeds the steel scrap threshold price, an increase in the iron/steel ratio can reduce the production cost,and vice versa.When the gap between the steel scrap unit price and the steel scrap threshold price is relatively large, the impact of the iron/steel ratio on the production cost is more prominent.According to the calculation example,when steel production is fixed (284 358 t/month)and the steel scrap unit price is 263.2 yuan/t more than the steel scrap threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 750 000 yuan (2.63 yuan/t).When the amount of molten iron is fixed (270 425 t/month)and the steel scrap unit price is 140.7 yuan/t more than the threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 430 000 yuan (1.5 yuan/t).The results indicate that iron and steel enterprise should adjust the production strategy in time when the scrap price fluctuates, and then the production cost will be reduced.
基金Project(70671108) supported by the National Natural Science Foundation of China
文摘In order to solve internal logistics problems of iron and steel works,such as low transportation efficiency of vehicles and high transportation cost,the production process and traditional transportation style of iron and steel works were introduced.The internal transport tasks of iron and steel works were grouped based on cluster analysis according to demand time of the transportation.An improved vehicle scheduling model of semi-trailer swap transport among loading nodes and unloading nodes in one task group was set up.The algorithm was designed to solve the vehicle routing problem with simultaneous pick-up and delivery(VRPSPD) problem based on semi-trailer swap transport.A solving program was written by MATLAB software and the method to figure out the optimal path of each grouping was obtained.The dropping and pulling transportation plan of the tractor was designed.And an example of semi-trailer swap transport in iron and steel works was given.The results indicate that semi-trailer swap transport can decrease the numbers of vehicles and drivers by 54.5% and 88.6% respectively compared with decentralized scheduling in iron and steel works,and the total distance traveled reduces by 43.5%.The semi-trailer swap transport can help the iron and steel works develop the production in intension.
文摘The abnormal corrosion of hot iron ladles was investigated.The performance,the composition and the structure of bricks for hot iron ladles were analyzed.The results show that(1)compared with the alumina-silicon carbide-carbon bricks for the ladle bottom,those for the ladle wall have more pyrophyllite and the Al2O3 content of 36.32 mass%;their bulk density,apparent porosity and cold compressive strength are lower than the requirement of industry standard;they have poor anti-oxidation performance and are oxidized to form a porous layer during service,which loosens the brick lining structure thus leading to fracture,local wear and structural damage of bricks;(2)without preheating,steel scraps are not completely melted,resulting in slag or steel attachment at the mouth or the bottom of ladles thus increasing damage of ladles;(3)and the residual bricks react with the attached slag to form low melting point phases affecting their hot properties.The refractories for the lining of hot iron ladles must be improved in combination with process changes,not entirely by raw materials replacement to reduce costs.
文摘The predictability of hardness of the heat affected zone (HAZ) in aluminum weldments cooled in palm oil, based on hardness of similarly cooled mild steel and cast iron weldments has been ascertained. The general model: α = 1.2769? indicates that HAZ hardness of aluminium weldment is dependant on the ratio of product to sum of HAZ hardness of mild steel and cast iron weldments cooled in palm oil under the same conditions. The maximum deviations of the model-predicted HAZ hardness values α, μ and β from the corresponding experimental values αexp, μexp and βexp were less than 0.04% indicating the reliability and validity of the model.
文摘The necessity of establishing gas protection station in iron and steel works is demonstrated,issues of strengthening the management of gas safety protection,studying new technology of gas protection,adapting to the needs of modernization and building large scale and intelligent iron and steel works are discussed.Relevant sug-gestions are also put forward.
文摘An overview of a severe kind of environmentally-assisted cracking-stress corrosion cracking (SCC) of pressure vessel steel (PVS),such as stainless steel 304, alloy 600,690 and other nickel-based alloys in subcritical (~300 ℃) aqueous environment was given. The mechanisms of SCC of metals under this inclement surrounding were briefly generalized. Herein,some pragmatic solutions to mitigate the SCC susceptibility and retard its propagation were presented. The titanium and cerium-based inhibitors addition countermeasure was highlighted.
文摘China's economic growth is heavily influenced by exports, while reconciling environmental regulation and economic growth requires handling the relationship between environmental regulation and industrial competitiveness well. The effects of environmental regulation on industrial competitiveness are largely subject to the institutional design of environmental regulation. Despite numerous studies on the relationship between environmental regulation and industrial competitiveness, a consensus has yet to be reached. Aside from differences in research methodology, these studies failed to give sufficient consideration to the impact of environmental regulation on industrial competitiveness. Such effects can be negative or positive depending on the design of environmental regulatory policy. This paper has investigated the relationship between environmental regulation and the competitiveness of China's iron and steel industry and discovered that tighter environmental regulation does not diminish the competitiveness of the iron and steel industry since the policy design of environmental regulation accommodates the tolerance of advanced production capacity and includes a reasonable cost sharing mechanism. This discovery is of important reference for China to develop rational policy design to balance the relationship between environmental regulation and industrial competitiveness.
文摘It is well known that the magnetic properties such as the Curie temperature Tmag <sub>C and the mean magnetic moment β of ordered compounds have different values from those of the disordered solutions. For instance, both Tmag c and β of the Ni3Pt (L12) and NiPt (L10) and Tmag <sub>c of the CoPt (L10) and CoPt3 (L12) ordered compounds are strongly depressed due to the ordering compared with those of the metastable disordered Ni-Pt and Co-Pt alloys. On the other hand, the γ’-FeNi3 (L12) and the α’-FeCo (B2) ordered compounds have higher Tmag <sub>c and β values comparing with the disordered solution phases, γ (A1) and α (A2), respectively. In consequence, the stability of the ordered phase is depressed or enhanced due to the interaction between the chemical and magnetic ordering caused by the decrease or increase of Tmag <sub>c and β values. The purpose of this study is to investigate the effect of the interaction between the chemical and the magnetic ordering on the phase equilibria in the Fe-X(X=Al, Co, Ni, Rh, Si) binary systems.The Gibbs energy of the α(A2), γ(A1) and liquid phases is described by a sub-regular solution approximation. The ordering contribution to the Gibbs energy ,ΔGorder <sub>m, and deviations of magnetic properties, ΔTmag <sub>c and Δβ, of the ordered compounds, FeAl (B2), Fe3Al (D03), FeCo (B2), FeRh (B2), FeSi (B2), Fe3Si (D03) and FeNi3 (L12) is introduced by the split compound energy formalism. Effect of the interaction between the chemical ordering, B2, D03 and L12 and the magnetic ordering on the phase equilibria will be discussed according to the calculated phase diagrams of the Fe-X binary systems.
文摘Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecorrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosionecorrosion problems. High velocity oxy-fuel(HVOF)spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology(RSM) was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.
文摘TiC based steel bonded carbides with the addition of nano TiN were prepared by vacuum sintering techniques.The microstructure was investigated using scanning electron microscopy(SEM) and transmission electron microscopy(TEM),and the mechanical properties,such as bending strength,impact toughness,hardness,and density,were measured.The results indicate that the grain size becomes small and there is uniformity in the steel bonded carbide with nano addition;several smaller carbide particles are also found to be inlaid in the rim of the larger carbide grains and prevent the coalescence of TiC grains.The smaller and larger carbide grains joint firmly,and then the reduction of the average size of the grains leads to the increase in the mechanical properties of the steel bonded carbides with nano addition.But the mechanical properties do not increase monotonously with an increase in nano addition.When the nano TiN addition accounts for 6-8 wt.% of the amount of steel bonded carbides,the mechanical properties reach the maximum values and then decrease with further increase in nano TiN addition.
基金Project supported by the National Natural Science Foundation of China (No. 30270800).
文摘The feasibility of steel slag used as an iron fertilizer was studied in a pot experiment with corn. Slag alone or acidified slag was added to two Fe-deficient calcareous soils at different rates. Results showed that moderate rates (10 and 20 g kg-1) of slag or acidified slag substantially increased corn dry matter yield and Fe uptake. Application of steel slag increased the residual concentration of ammonium bicarbonate-diethylenetriamine pentaacetic acid (AB-DTPA) extractable Fe in the soils. The increase of extractable Fe was usually proportional to the application rate, and enhanced by the acidification of slag. Steel slag appeared to be a promising and inexpensive source of Fe to alleviate crop Fe chlorosis in Fe-deficient calcareous soils.
文摘Recently procured outstanding achievements in iron and steel industry in China are presented by data or facts in steel output, energy consumption, technical and economical indicators and advanced technologies that are being adopted. The latest achievements in refractonries for this biggest user industry are reviewed, covering new refractories for CDQ coke oven, BF hearth, AOD Lining, long life tundish, SEN for clean steel making and regenerative reheating furnace . The reciprocal relationship is obvious that the rapid development of iron and steel industry has given an impetus to the advance of refractories industry, which in return has contributed greatly to the former.
文摘In the past 25 years in China, to meet with the rapid increase in steel production accompanied by adoption of advanced metallurgical technologies, there has been fast development of China' s refractories industry in production capacity, in quality improvement and in development of new products. Sophisticated high performance refractory materials mainly based on our rich reserves of magncsite, bauxite and flake graphite have been developed, such as carbon-bonded products, high purity oxide products, bauxite-based low creep and high strength high alumina bricks and LC, ULC and ZC castables. They have been used in blast furnaces, BOFs, EAFs, secondary refining and continuous casting with considerable improvement in service pecformance.
文摘The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors affecting transition zone quality.By controlling process parameter and flux adding during casting,high quality roll collar was obtained.The cause,why in the casting of HSS part,segregation appears easily,was analyzed and the countermeasure eliminating segregation was put forward,the measure eliminating heat treatment crackling was also put forward.
文摘High-chromium white cast iron (HCWCI) is one of the most widely used engineering materials in the mining and cement industries. However, in some components, such as the pulverizer plates of ash mills, the poor machinability of HCWCI creates difficulties. The bimetal casting technique is a suitable method for improving the machinability of HCWCI by joining an easily machined layer of plain carbon steel (PCS) to its hard part. In this study, the possibility of PCS/HCWCI bimetal casting was investigated using sand casting. The investigation was conducted by optical and electron microscopy and non-destructive, impact toughness, and tensile tests. The hardness and chemical composition profiles on both sides of the interface were plotted in this study. The results indicated that a conventional and low-cost casting technique could be a reliable method for producing PCSYdCWCI bimetal. The interfacial microstructure comprised two distinct lay- ers: a very fine, partially spheroidized pearlite layer and a coarse full pearlite layer. Moreover, characterization of the microstructure revealed that the interface was free of defects.
基金Funded by the National Natural Science Foundation of China(No.U1860112)the State Key Laboratory of Marine Equipment made of Metal Material and Application(No.SKLMEAUSTL-201708 and No.SKLMEA-USTL-201703)+1 种基金the Key Project of Liaoning Education Department(No.2019FWDF03)the National Natural Science Foundation of USTL(No.2017QN11)
文摘The addition of high Ti(>0.1%) in microalloyed bainitic high strength steel was designed, and the precipitation morphology of steels with different Ti, Nb, and V contents was studied by utilizing transmission electron microscopy(TEM). Based on the classical nucleation-crystal growth theory and the Johnson-Mehl-Avrami equation, the precipitation thermodynamic and kinetic model of second phase particles in austenite was established in the form of(Nbx,Vy,Tiz)C, and the complex precipitation mechanism of second phase particles was emphatically studied. The experimental results show that the complex precipitation particles could be divided into two categories: the coarser particles with about 100 nm grain size and the independent complex precipitation particles in the form of(Nb,V,Ti)C with 35-50 nm grain size. The latter has a better precipitation strengthening effect, and the calculated PTT curve shows a typical "C" shape. When the deformed storage energy is 3 820 J?mol-1, the fastest precipitation temperature of calculated PTT curve is 925 °C, and the calculated result is essentially consistent with experimental values. The increase of Ti content increased the nose point temperature and expanded the range of fastest precipitation temperature.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51832001 and 31800843)the National Key Research and Development Program of China(Grant No.2017YFA0104301)the Collaborative Innovation Center of Suzhou Nano Science and Technology(Grant No.SX21400213)
文摘With unique physical properties, chemical properties, and biological effects, magnetic nanomaterials are important functional materials in many fields. In the past decades, iron based magnetic nanomaterials have attracted much attention in the biomedicine field due to their superior magnetic properties and great potential in biomedical applications. In particular, magnetic iron oxide nanoparticles(MIONPs) have been playing a crucial role in the biomedicine field because of their diagnostic and therapeutic functions. Meanwhile, MIONPs are benign, low toxic, biocompatible, and biodegradable, so they are the only inorganic magnetic nanomaterials approved by the U.S. Food and Drug Administration(FDA) for clinical use at present. In this review, we mainly introduce the progress in the preparation of iron based magnetic nanomaterials for biomedical applications, including pure iron nanoparticles, iron-based alloy nanoparticles, and MIONPs, with a focus on MIONPs. Also, we summarize the preparation methods of MIONPs and point out the importance of their developments.
文摘Electrolytic hardening process was developed in USSR in the 1950s. The process was developed but was not commercially exploited. There is no evidence of work done on this process in India. The author has done this original work applied to different materials like steel, cast iron and aluminum-bronze. This paper gives details of microstructural transformations along with hardness value achieved. There is vital scope for this process to become viable for surface hardening and selective hardening of small components.