Reaction behaviors of sulfur and iron compounds in sodium aluminate solutions were investigated. The results show that iron compounds can remarkably remove the S2 but cannot get rid of S2Oc2-, SO^2- and SO4^-2 in sodi...Reaction behaviors of sulfur and iron compounds in sodium aluminate solutions were investigated. The results show that iron compounds can remarkably remove the S2 but cannot get rid of S2Oc2-, SO^2- and SO4^-2 in sodium aluminate solutions. The removal efficiency of S^2- using ferrous compound and ferric compound can reach 86.10% and 92.70% respectively when the iron compounds were added with a molar ratio of 2:1 compared with the sulfur in liquors at 100℃. Moreover, several same compounds are formed in those two desulfurization processes with ferrous or ferric compounds, including erdite, hematite, amorphous ferrous sulfide, polymerized sulfur-iron compounds and ferric sulfate. The major difference between these two processes is that the erdite generated from ferrous compounds at the initial reaction stage will convert to a sodium-free product FeS2 at the subsequent stage.展开更多
The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(C...The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(CaCl_(2)),or calcium sulfate(CaSO_(4))as additive,the process of direct reduction and phosphorus removal of high-phosphorus iron ore(phosphorus mainly occurred in the form of Fe_(3)PO_(7) and apatite)was studied by using the technique of direct reductiongrinding-magnetic separation.The mechanism of calcium compounds to reduce phosphorus was investigated from thermodynamics,iron metallization degree,mineral composition and microstructure.Results showed that Fe_(3)PO_(7) was reduced to elemental phosphorus without calcium compounds.The iron-phosphorus alloy was generated by react of metallic iron and phosphorus,resulting in high phosphorus in reduced iron products.CaCO_(3) promoted the reduction of hematite and magnetite,and improved iron metallization degree,but inhibited the growth of metallic iron particles.CaCl_(2) strengthened the growth of iron particles.However,the recovery of iron was reduced due to the formation of volatile FeCl_(2).CaSO_(4) promoted the growth of iron particles,but the recovery of iron was drastically reduced due to the formation of non-magnetic FeS.CaCO_(3),CaCl_(2) or CaSO_(4) could react with Fe_(3)PO_(7) to form calcium phosphate(Ca_(3)(PO_(4))_(2)).With the addition of CaCO_(3),Ca_(3)(PO_(4))_(2) was closely combined with fine iron particles.It is difficult to separate iron and phosphorus by grinding and magnetic separation,resulting in the reduced iron product phosphorus content of 0.18%.In the presence of CaCl_(2) or CaSO_(4),the boundary between the generated Ca_(3)(PO_(4))_(2) and the metallic iron particles was obvious.Phosphorus was removed by grinding and magnetic separation,and the phosphorus content in the reduced iron product was less than 0.10%.展开更多
Sulphur-containing aromatic amines were prepared efficiently in good to excellent yields by reduction of the corresponding sulphur-containing aromatic nitro compounds with hydrazine hydrate in the presence of iron(Ⅲ...Sulphur-containing aromatic amines were prepared efficiently in good to excellent yields by reduction of the corresponding sulphur-containing aromatic nitro compounds with hydrazine hydrate in the presence of iron(Ⅲ) oxide-MgO catalyst. The catalyst exhibited high activity and stability for the reduction of sulphur-containing aromatic nitro compounds. The yields of sulphur-containing aromatic amines were up to 91-99 % at 355 K after reduction for 1-4 h over this catalyst.展开更多
Sulphur-containing aromatic nitro compounds were rapidly reduced to the corresponding amines in high yields by employing hydrazine hydrate as a hydrogen donor in the presence of iron oxide hydroxide catalyst. It was w...Sulphur-containing aromatic nitro compounds were rapidly reduced to the corresponding amines in high yields by employing hydrazine hydrate as a hydrogen donor in the presence of iron oxide hydroxide catalyst. It was worth noting that the catalyst exhibited extremely high activity. The reduction could be completed within 20-50 min and the yields were up to 97-99 %.展开更多
The distribution and form of iron and calcium compounds were studied using hydrogenation feedstock and hydrogenation products with different space velocities as the research object.The content of metallic elements,suc...The distribution and form of iron and calcium compounds were studied using hydrogenation feedstock and hydrogenation products with different space velocities as the research object.The content of metallic elements,such as calcium and iron in hydrogenation feedstock,and extract samples were determined via flame atomic absorption spectrometry.The water-soluble iron and calcium species in oil samples were determined by an IC2010 high-throughput ion chromatograph.Nearly 60%-80%of the iron or calcium compounds were mainly concentrated in resins and asphaltenes.Iron and calcium compounds mainly exist in the form of oil-soluble metal species in hydrogenation feedstock and hydrogenation products.Under certain conditions of reaction temperature,pressure,and volume ratio of hydrogen to oil,when the reaction space velocity was 0.6 h^(−1),about 30%of the iron or calcium compounds were converted from oil-soluble to water-soluble species after hydrogenation.When the reaction space velocity was decreased from 1.70 to 0.60 h^(−1),the proportion of iron compounds converted from oil-soluble to water-soluble increased from 8.4%to 28%.Moreover,the proportion of calcium compounds converted from oil-soluble to water-soluble increased from 10%to 37%.This denotes that with decreasing reaction space velocity,the ratio of oil-soluble to water-soluble species increases.Water-soluble iron and calcium compounds are present in the form of inorganic salts,such as chlorate and sulfate.This study helps in understanding the removal mechanism of iron and calcium compounds and optimizing the operating conditions of residue hydrogenation.展开更多
The electroactive materials used in the counter electrode(CE)are of great concern as they influence the photovoltaic performances of dye-sensitized solar cells.The main functions of CE materials are collecting electro...The electroactive materials used in the counter electrode(CE)are of great concern as they influence the photovoltaic performances of dye-sensitized solar cells.The main functions of CE materials are collecting electrons from the external circuit and transferring them to the electrolyte and realizing the catalytic reduction of the redox species(I3^– or Co^3+)present in the electrolyte.The research hotspot of CE materials is seeking functional materials that display high efficiency,low cost,and good electrochemical stability and can substitute the benchmark platinum electrode.Chalcogen compounds of cobalt,nickel,and iron have been widely applied as CE materials and exhibit excellent electrocatalytic performances owing to their unique electrical properties,similar energies of adsorption of I atoms as platinum,excellent catalytic activities,and good chemical stabilities.In this review,we trace the developments and performances of chalcogen compounds of iron,cobalt,and nickel as CE materials and present the latest research directions for improving the electrocatalytic performances.We then highlight the optimization strategies for further improving their performances,such as fabrication of architectures,regulation of the components,synthesis of composites containing carbon materials,and elemental doping.展开更多
The present study investigated quantitatively the significance of HNLC (high-nutrient low-chlorophyll) regions and its grazing control with the improved iron fertilization for climate change. The limitation of iron (F...The present study investigated quantitatively the significance of HNLC (high-nutrient low-chlorophyll) regions and its grazing control with the improved iron fertilization for climate change. The limitation of iron (Fe) for phytoplankton growth in HNLC regions was confirmed by sulfur compounds (S) such as volcanic ash and hydrogen sulfide (H2S) in batch cultures, whose chemical sediment of Fe3S4 showed 4.06 wt%. The technologies developed for iron fertilization since 1993 till now were not practical to provide sufficient amounts of bioavailable iron due to sedimentary iron sulfides induced by undersea volcanic sulfur compounds. The proposed technology for iron fertilization was improved to enhance the bioavailable iron to phytoplankton by keeping minimal sulfur compounds in HNLC regions. The low productivity of phytoplankton by grazing control in HNLC regions was 6% diatoms whose 52% was grazed by copepods and 42% by krill on the basis of data analysis in 2000 EisenEx Experiment at boundary of Antarctic and African tectonic plates. All of the previous iron fertilization experiments were conducted at volcanic sulfur compounds enriched HNLC regions. The present study revealed that the enhanced phytoplankton productivity in batch culture without sedimentary iron sulfides can be possible only if sulfur compounds are minimal, as is in Shag Rocks (53°S, 42°W) of South Georgia in Scotia Sea in the Southern Ocean.展开更多
Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate(VTC) were investigated. It was found that calcium compounds had great effects on the metallization rate of the reducti...Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate(VTC) were investigated. It was found that calcium compounds had great effects on the metallization rate of the reduction product, the order of the metallization rate of reduction product being CaCO3 > no additive > CaSO4 > CaCl2, which indicated that the addition of CaCO3 was more conducive to promoting the reduction of iron than other calcium compounds. Gas analysis showed that there were mainly two processes in the carbothermic reduction of VTC, a solid–solid and a solid–gas reaction. The concentrations of CO and CO2 were highest when CaCO3 was added, while that in a roasting system decreased the most when CaCl2 was added. X-ray diffraction(XRD) analysis showed that calcium compounds could change the reduction process of ilmenite in VTC. The phase compositions of the reduction products were changed from metallic iron(Fe) and anosovite(FeTi2O5) to metallic iron(Fe) and perovekite(CaTiO3) when calcium compounds were added. Additionally, CaSO4 and CaCl2 could significantly promote the growth of metallic iron particles, though the existence of Fe-bearing Mg2TiO4 in reduction products was not conducive to the reduction of iron. The formation of FeS would further hinder the reduction of iron after adding CaSO4.展开更多
Forty-six candidate phenol/benzoate degrading-iron reducing bacteria were isolated from long term irrigated tropical paddy soils by enrichment procedures.Pure cultures and some prepared mixed cultures were examined fo...Forty-six candidate phenol/benzoate degrading-iron reducing bacteria were isolated from long term irrigated tropical paddy soils by enrichment procedures.Pure cultures and some prepared mixed cultures were examined for ferric oxide reduction and phenol/benzoate degradation.All the isolates were iron reducers,but only 56.5%could couple iron reduction to phenol and/or benzoate degradation,as evidenced by depletion of phenol and benzoate after one week incubation.Analysis of degradative capability using Biolog...展开更多
The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors af...The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors affecting transition zone quality.By controlling process parameter and flux adding during casting,high quality roll collar was obtained.The cause,why in the casting of HSS part,segregation appears easily,was analyzed and the countermeasure eliminating segregation was put forward,the measure eliminating heat treatment crackling was also put forward.展开更多
Iron aluminides exhibit good resistance to high-temperature sulfidizing and oxidizing environments and potential for structural applications at high temperatures under corrosive environments. In this study, Fe-Al inte...Iron aluminides exhibit good resistance to high-temperature sulfidizing and oxidizing environments and potential for structural applications at high temperatures under corrosive environments. In this study, Fe-Al intermetallic compound was prepared by multi-layered roll-bonding of elemental Fe and Al foils. The process consisted of the accumulative roll-bonding (ARE) for making a laminated Fe/Al sheet and the subsequent heat treatment promoting a solid phase reaction in the laminated Fe/Al sheet. The microstructures produced at each processing stage were characterized by optical microscopy and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS). Vickers microhardness testing was used for hardness determination. A homogeneous intermetallic compound of Fe3Al or FeAl could be obtained after the subsequent heat treatment for 1.8 ks at 973 K and for 10.8 ks at 1123 or 1173 K.展开更多
New composition perovskite-type compounds with formula Sr0.6Bi0.4FeO2.7,Sr1-xBixFeO3-y(x=0.1 to 0. 9 in interveral of 0.1),and Ba1.5Pt0.5Mn2O6 have been synthsized and structurally characterized.The crystal structure ...New composition perovskite-type compounds with formula Sr0.6Bi0.4FeO2.7,Sr1-xBixFeO3-y(x=0.1 to 0. 9 in interveral of 0.1),and Ba1.5Pt0.5Mn2O6 have been synthsized and structurally characterized.The crystal structure of Sr0.6Bi0.4FeO2.7has been determined by X-ray single crystal diffraction,and the data of neutron powder diffraction collected at both room temperature and elevated temperature(380℃).The compound Sr0.6Bi0.4FeO2.7 crystallizes in the cubic space group of Pm3m with Z=1,a=3.9330(6) at room temperature,a=3.9498(6)A at 380℃.The magnetic structure from the neutron powder diffraction data collected at room temperature is consistent with a simple G-type antiferromagnetism and has a magnetic moment of 4.98 μB per Fe atom.The structures of Sr1-xBixFeO3-y with x other than 0.4 were also refined from the X-ray powder diffraction data.The data were consistent with a tetragonal cell when x=0.1,a rhombohedral cell when x= 0.9,and a cubic cell for x=0.2~0.8.From single crystal X-ray diffraction data,Ba1.5Pt0.5Mn2O6 crystallizes in hexagonal space group of P63mc with a= 5.7722 (6),c=4.4504(9),V=128.42(2),Z=1.The Sr(1-x)BixFeO(3-y)are found to be a good electronic and ionic conductor.展开更多
Zero-valent iron(ZVI),an ideal reductant treating persistent pollutants,is hampered by issues like corrosion,passivation,and suboptimal utilization.Recent advancements in nonmetallic modified ZVI(NM-ZVI)show promising...Zero-valent iron(ZVI),an ideal reductant treating persistent pollutants,is hampered by issues like corrosion,passivation,and suboptimal utilization.Recent advancements in nonmetallic modified ZVI(NM-ZVI)show promising potential in circumventing these challenges by modifying ZVI's surface and internal physicochemical properties.Despite its promise,a thorough synthesis of research advancements in this domain remains elusive.Here we review the innovative methodologies,regulatory principles,and reduction-centric mechanisms underpinning NM-ZVI's effectiveness against two prevalent persistent pollutants:halogenated organic compounds and heavy metals.We start by evaluating different nonmetallic modification techniques,such as liquid-phase reduction,mechanical ball milling,and pyrolysis,and their respective advantages.The discussion progresses towards a critical analysis of current strategies and mechanisms used for NM-ZVI to enhance its reactivity,electron selectivity,and electron utilization efficiency.This is achieved by optimizing the elemental compositions,content ratios,lattice constants,hydrophobicity,and conductivity.Furthermore,we propose novel approaches for augmenting NM-ZVI's capability to address complex pollution challenges.This review highlights NM-ZVI's potential as an alternative to remediate water environments contaminated with halogenated organic compounds or heavy metals,contributing to the broader discourse on green remediation technologies.展开更多
A series of both unsupported and coal‐supported iron–oxygen compounds with gradual changes in microstructure were synthesized by a precipitation‐oxidation process at 20 to 70°C.The relationship between the mic...A series of both unsupported and coal‐supported iron–oxygen compounds with gradual changes in microstructure were synthesized by a precipitation‐oxidation process at 20 to 70°C.The relationship between the microstructures and catalytic activities of these precursors during direct coal liquefaction was studied.The results show that the microstructure could be controlled through adjusting the synthesis temperature during the precipitation‐oxidation procedure,and that compounds synthesized at lower temperatures exhibit higher catalytic activity.As a result of their higher proportions ofγ‐FeOOH orα‐FeOOH crystalline phases,the unsupported iron–oxygen compounds synthesized at 20–30°C,which also had high specific surface areas and moisture levels,generate oil yields 4.5%–4.6%higher than those obtained with precursors synthesized at 70°C.It was also determined that higher oil yields were obtained when the catalytically‐active phase formed by the precursors during liquefaction(pyrrhotite,Fe1-xS)had smaller crystallites.Feed coal added as a carrier was found to efficiently disperse the active precursors,which in turn significantly improved the catalytic activity during coal liquefaction.展开更多
Gray cast irons were inoculated with FeSi75+RE and FeSi75+Sr inoculants. The changes of apex angle of the drills before and after being used were used to evaluate machinability of gray cast irons. Effect of FeSi75+...Gray cast irons were inoculated with FeSi75+RE and FeSi75+Sr inoculants. The changes of apex angle of the drills before and after being used were used to evaluate machinability of gray cast irons. Effect of FeSi75+RE and FeSi75+Sr inoculants on mechanical properties, machinability and sensibility of gray cast iron used in cylinder block were investigated. Experimental results showed that gray cast iron treated with 60%FeSi75+40% RE inoculants exhibited tensile strength consistently at about 295 MPa along with good hardness and improved metallurgical quality. While gray cast iron inoculated with 20%FeSi75+80% Sr inoculants exhibited the best machinability, the lowest cross-section sensibility and the least microhardness difference. The tool flank wear of the drill increased correspondingly with the increase of the microhardness difference of the matrix, indicating the great effect of homogeneity of the matrix on the machinability of gray cast iron.展开更多
Effect of several complex inoculants on mechanical properties, process-ability and sensibility of grey cast iron used in cylinder block were investigated. The experimental results showed that the grey cast iron treate...Effect of several complex inoculants on mechanical properties, process-ability and sensibility of grey cast iron used in cylinder block were investigated. The experimental results showed that the grey cast iron treated with 60%FeSi75+40%RE complex inoculants has tensile strength consistently at about 295 MPa along with good hardness and improved metallurgy quality. While the grey cast iron inoculated with 20%FeSi75+80%Sr compound inoculants has the best process-ability, the lowest cross-section sensibility and the least microhardness difference. The wear amount of the drill increases correspondingly with the increase of the microhardness difference of matrix structure, indicating the great effect of homogeneousness of matrix structure in the grey cast iron on the machinability of the grey cast iron.展开更多
The intercalatants presence of Fe-KCl graphite intercalation compound (Fe-KCl G/C) is in the form of independent crystalline phase. In this paper, its distribution in the carbon interlayer, crystalline status and powd...The intercalatants presence of Fe-KCl graphite intercalation compound (Fe-KCl G/C) is in the form of independent crystalline phase. In this paper, its distribution in the carbon interlayer, crystalline status and powder sizes have been studied by X-ray diffraction (XRD) , small angle X-ray scattering (SAXS) and transmission electron microscope (TEM). And the partial crystal structure of the GIC has been researched too.展开更多
The cyclic voltammetry was used to investigate the electrode processes of Nd(III) reduced on iron electrode and Nd(III),Fe(II) reduced on molybdenum electrode in molten chlorides. The Nd-Fe and Nd-rich RE-Fe alloys co...The cyclic voltammetry was used to investigate the electrode processes of Nd(III) reduced on iron electrode and Nd(III),Fe(II) reduced on molybdenum electrode in molten chlorides. The Nd-Fe and Nd-rich RE-Fe alloys contained rare earth up to 90wt% were prepared by consumable cathode and electrolytic codeposition. The mechanism of electrochemical formation of Nd-Fe alloy had been discussed.展开更多
The graphite encapsulated a-Fe particles were prepared by reduction of stage-2 and stage-3 FeCI3 graphite intercalation compounds (GICs) with metallic potassium, X-ray diffraction analysis (XRD), energy dispersive...The graphite encapsulated a-Fe particles were prepared by reduction of stage-2 and stage-3 FeCI3 graphite intercalation compounds (GICs) with metallic potassium, X-ray diffraction analysis (XRD), energy dispersive X-ray spectroscopy (EDS) investigation and transmission electron microscopy (TEM) observation show that the reduction products of stage-2 FeCl3-GICs contains more abundant a-Fe nanoparticles than those of stage-3. High-resolution TEM (HRTEM) observation reveals that the nanoparticle of a-Fe was polycrystals or twins, which was real or quasi two-dimension in shape, and whose space orientation was strictly controlled by the graphene. Based on the experiment results, a possible growth model of the graphite encapsulated ct-Fe was proposed.展开更多
基金Project(51374239)supported by the National Natural Science Foundation of China
文摘Reaction behaviors of sulfur and iron compounds in sodium aluminate solutions were investigated. The results show that iron compounds can remarkably remove the S2 but cannot get rid of S2Oc2-, SO^2- and SO4^-2 in sodium aluminate solutions. The removal efficiency of S^2- using ferrous compound and ferric compound can reach 86.10% and 92.70% respectively when the iron compounds were added with a molar ratio of 2:1 compared with the sulfur in liquors at 100℃. Moreover, several same compounds are formed in those two desulfurization processes with ferrous or ferric compounds, including erdite, hematite, amorphous ferrous sulfide, polymerized sulfur-iron compounds and ferric sulfate. The major difference between these two processes is that the erdite generated from ferrous compounds at the initial reaction stage will convert to a sodium-free product FeS2 at the subsequent stage.
基金Projects(51874017,52174236)supported by the National Natural Science Foundation of China。
文摘The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(CaCl_(2)),or calcium sulfate(CaSO_(4))as additive,the process of direct reduction and phosphorus removal of high-phosphorus iron ore(phosphorus mainly occurred in the form of Fe_(3)PO_(7) and apatite)was studied by using the technique of direct reductiongrinding-magnetic separation.The mechanism of calcium compounds to reduce phosphorus was investigated from thermodynamics,iron metallization degree,mineral composition and microstructure.Results showed that Fe_(3)PO_(7) was reduced to elemental phosphorus without calcium compounds.The iron-phosphorus alloy was generated by react of metallic iron and phosphorus,resulting in high phosphorus in reduced iron products.CaCO_(3) promoted the reduction of hematite and magnetite,and improved iron metallization degree,but inhibited the growth of metallic iron particles.CaCl_(2) strengthened the growth of iron particles.However,the recovery of iron was reduced due to the formation of volatile FeCl_(2).CaSO_(4) promoted the growth of iron particles,but the recovery of iron was drastically reduced due to the formation of non-magnetic FeS.CaCO_(3),CaCl_(2) or CaSO_(4) could react with Fe_(3)PO_(7) to form calcium phosphate(Ca_(3)(PO_(4))_(2)).With the addition of CaCO_(3),Ca_(3)(PO_(4))_(2) was closely combined with fine iron particles.It is difficult to separate iron and phosphorus by grinding and magnetic separation,resulting in the reduced iron product phosphorus content of 0.18%.In the presence of CaCl_(2) or CaSO_(4),the boundary between the generated Ca_(3)(PO_(4))_(2) and the metallic iron particles was obvious.Phosphorus was removed by grinding and magnetic separation,and the phosphorus content in the reduced iron product was less than 0.10%.
文摘Sulphur-containing aromatic amines were prepared efficiently in good to excellent yields by reduction of the corresponding sulphur-containing aromatic nitro compounds with hydrazine hydrate in the presence of iron(Ⅲ) oxide-MgO catalyst. The catalyst exhibited high activity and stability for the reduction of sulphur-containing aromatic nitro compounds. The yields of sulphur-containing aromatic amines were up to 91-99 % at 355 K after reduction for 1-4 h over this catalyst.
文摘Sulphur-containing aromatic nitro compounds were rapidly reduced to the corresponding amines in high yields by employing hydrazine hydrate as a hydrogen donor in the presence of iron oxide hydroxide catalyst. It was worth noting that the catalyst exhibited extremely high activity. The reduction could be completed within 20-50 min and the yields were up to 97-99 %.
基金supported by the National Natural Science Foundation of China (No. 21576292)the independent innovation research project of China University of Petroleum (East China) (No. 22CX0300A)
文摘The distribution and form of iron and calcium compounds were studied using hydrogenation feedstock and hydrogenation products with different space velocities as the research object.The content of metallic elements,such as calcium and iron in hydrogenation feedstock,and extract samples were determined via flame atomic absorption spectrometry.The water-soluble iron and calcium species in oil samples were determined by an IC2010 high-throughput ion chromatograph.Nearly 60%-80%of the iron or calcium compounds were mainly concentrated in resins and asphaltenes.Iron and calcium compounds mainly exist in the form of oil-soluble metal species in hydrogenation feedstock and hydrogenation products.Under certain conditions of reaction temperature,pressure,and volume ratio of hydrogen to oil,when the reaction space velocity was 0.6 h^(−1),about 30%of the iron or calcium compounds were converted from oil-soluble to water-soluble species after hydrogenation.When the reaction space velocity was decreased from 1.70 to 0.60 h^(−1),the proportion of iron compounds converted from oil-soluble to water-soluble increased from 8.4%to 28%.Moreover,the proportion of calcium compounds converted from oil-soluble to water-soluble increased from 10%to 37%.This denotes that with decreasing reaction space velocity,the ratio of oil-soluble to water-soluble species increases.Water-soluble iron and calcium compounds are present in the form of inorganic salts,such as chlorate and sulfate.This study helps in understanding the removal mechanism of iron and calcium compounds and optimizing the operating conditions of residue hydrogenation.
基金supported by the National Science Fund for Distinguished Young Scholars(21425729)from the National Natural Science Foundation of Chinathe National Special S&T Project on Water Pollution Control and Treatment(2017ZX07107002)+1 种基金China Postdoctoral Science Foundation(2018M640209)the Tianjin Science and Technology Support Key Projects(18YFZCSF00500)~~
文摘The electroactive materials used in the counter electrode(CE)are of great concern as they influence the photovoltaic performances of dye-sensitized solar cells.The main functions of CE materials are collecting electrons from the external circuit and transferring them to the electrolyte and realizing the catalytic reduction of the redox species(I3^– or Co^3+)present in the electrolyte.The research hotspot of CE materials is seeking functional materials that display high efficiency,low cost,and good electrochemical stability and can substitute the benchmark platinum electrode.Chalcogen compounds of cobalt,nickel,and iron have been widely applied as CE materials and exhibit excellent electrocatalytic performances owing to their unique electrical properties,similar energies of adsorption of I atoms as platinum,excellent catalytic activities,and good chemical stabilities.In this review,we trace the developments and performances of chalcogen compounds of iron,cobalt,and nickel as CE materials and present the latest research directions for improving the electrocatalytic performances.We then highlight the optimization strategies for further improving their performances,such as fabrication of architectures,regulation of the components,synthesis of composites containing carbon materials,and elemental doping.
文摘The present study investigated quantitatively the significance of HNLC (high-nutrient low-chlorophyll) regions and its grazing control with the improved iron fertilization for climate change. The limitation of iron (Fe) for phytoplankton growth in HNLC regions was confirmed by sulfur compounds (S) such as volcanic ash and hydrogen sulfide (H2S) in batch cultures, whose chemical sediment of Fe3S4 showed 4.06 wt%. The technologies developed for iron fertilization since 1993 till now were not practical to provide sufficient amounts of bioavailable iron due to sedimentary iron sulfides induced by undersea volcanic sulfur compounds. The proposed technology for iron fertilization was improved to enhance the bioavailable iron to phytoplankton by keeping minimal sulfur compounds in HNLC regions. The low productivity of phytoplankton by grazing control in HNLC regions was 6% diatoms whose 52% was grazed by copepods and 42% by krill on the basis of data analysis in 2000 EisenEx Experiment at boundary of Antarctic and African tectonic plates. All of the previous iron fertilization experiments were conducted at volcanic sulfur compounds enriched HNLC regions. The present study revealed that the enhanced phytoplankton productivity in batch culture without sedimentary iron sulfides can be possible only if sulfur compounds are minimal, as is in Shag Rocks (53°S, 42°W) of South Georgia in Scotia Sea in the Southern Ocean.
基金financially supported by the National Natural Science Foundation of China(No.51674018)
文摘Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate(VTC) were investigated. It was found that calcium compounds had great effects on the metallization rate of the reduction product, the order of the metallization rate of reduction product being CaCO3 > no additive > CaSO4 > CaCl2, which indicated that the addition of CaCO3 was more conducive to promoting the reduction of iron than other calcium compounds. Gas analysis showed that there were mainly two processes in the carbothermic reduction of VTC, a solid–solid and a solid–gas reaction. The concentrations of CO and CO2 were highest when CaCO3 was added, while that in a roasting system decreased the most when CaCl2 was added. X-ray diffraction(XRD) analysis showed that calcium compounds could change the reduction process of ilmenite in VTC. The phase compositions of the reduction products were changed from metallic iron(Fe) and anosovite(FeTi2O5) to metallic iron(Fe) and perovekite(CaTiO3) when calcium compounds were added. Additionally, CaSO4 and CaCl2 could significantly promote the growth of metallic iron particles, though the existence of Fe-bearing Mg2TiO4 in reduction products was not conducive to the reduction of iron. The formation of FeS would further hinder the reduction of iron after adding CaSO4.
文摘Forty-six candidate phenol/benzoate degrading-iron reducing bacteria were isolated from long term irrigated tropical paddy soils by enrichment procedures.Pure cultures and some prepared mixed cultures were examined for ferric oxide reduction and phenol/benzoate degradation.All the isolates were iron reducers,but only 56.5%could couple iron reduction to phenol and/or benzoate degradation,as evidenced by depletion of phenol and benzoate after one week incubation.Analysis of degradative capability using Biolog...
文摘The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors affecting transition zone quality.By controlling process parameter and flux adding during casting,high quality roll collar was obtained.The cause,why in the casting of HSS part,segregation appears easily,was analyzed and the countermeasure eliminating segregation was put forward,the measure eliminating heat treatment crackling was also put forward.
文摘Iron aluminides exhibit good resistance to high-temperature sulfidizing and oxidizing environments and potential for structural applications at high temperatures under corrosive environments. In this study, Fe-Al intermetallic compound was prepared by multi-layered roll-bonding of elemental Fe and Al foils. The process consisted of the accumulative roll-bonding (ARE) for making a laminated Fe/Al sheet and the subsequent heat treatment promoting a solid phase reaction in the laminated Fe/Al sheet. The microstructures produced at each processing stage were characterized by optical microscopy and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS). Vickers microhardness testing was used for hardness determination. A homogeneous intermetallic compound of Fe3Al or FeAl could be obtained after the subsequent heat treatment for 1.8 ks at 973 K and for 10.8 ks at 1123 or 1173 K.
文摘New composition perovskite-type compounds with formula Sr0.6Bi0.4FeO2.7,Sr1-xBixFeO3-y(x=0.1 to 0. 9 in interveral of 0.1),and Ba1.5Pt0.5Mn2O6 have been synthsized and structurally characterized.The crystal structure of Sr0.6Bi0.4FeO2.7has been determined by X-ray single crystal diffraction,and the data of neutron powder diffraction collected at both room temperature and elevated temperature(380℃).The compound Sr0.6Bi0.4FeO2.7 crystallizes in the cubic space group of Pm3m with Z=1,a=3.9330(6) at room temperature,a=3.9498(6)A at 380℃.The magnetic structure from the neutron powder diffraction data collected at room temperature is consistent with a simple G-type antiferromagnetism and has a magnetic moment of 4.98 μB per Fe atom.The structures of Sr1-xBixFeO3-y with x other than 0.4 were also refined from the X-ray powder diffraction data.The data were consistent with a tetragonal cell when x=0.1,a rhombohedral cell when x= 0.9,and a cubic cell for x=0.2~0.8.From single crystal X-ray diffraction data,Ba1.5Pt0.5Mn2O6 crystallizes in hexagonal space group of P63mc with a= 5.7722 (6),c=4.4504(9),V=128.42(2),Z=1.The Sr(1-x)BixFeO(3-y)are found to be a good electronic and ionic conductor.
基金supported by the NSFC-JSPS joint research program(No.51961145202)the National Natural Science Foundation of China(No.52370163,52321005,and 52293443)the State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(No.2022TS42).
文摘Zero-valent iron(ZVI),an ideal reductant treating persistent pollutants,is hampered by issues like corrosion,passivation,and suboptimal utilization.Recent advancements in nonmetallic modified ZVI(NM-ZVI)show promising potential in circumventing these challenges by modifying ZVI's surface and internal physicochemical properties.Despite its promise,a thorough synthesis of research advancements in this domain remains elusive.Here we review the innovative methodologies,regulatory principles,and reduction-centric mechanisms underpinning NM-ZVI's effectiveness against two prevalent persistent pollutants:halogenated organic compounds and heavy metals.We start by evaluating different nonmetallic modification techniques,such as liquid-phase reduction,mechanical ball milling,and pyrolysis,and their respective advantages.The discussion progresses towards a critical analysis of current strategies and mechanisms used for NM-ZVI to enhance its reactivity,electron selectivity,and electron utilization efficiency.This is achieved by optimizing the elemental compositions,content ratios,lattice constants,hydrophobicity,and conductivity.Furthermore,we propose novel approaches for augmenting NM-ZVI's capability to address complex pollution challenges.This review highlights NM-ZVI's potential as an alternative to remediate water environments contaminated with halogenated organic compounds or heavy metals,contributing to the broader discourse on green remediation technologies.
基金financially supported by the National Basic Research Program of China(Nos.2013CB632601 and 2013CB632604)the National Science Foundation for Distinguished Young Scholars of China(Nos.51125018 and 51504230)+2 种基金the Key Research Program of Chinese Academy of Sciences(No.KGZD-EW-201-2)the National Natural Science Foundation of China(Nos.51374191 and 2110616751104139)China Postdoctoral Science Foundation(Nos.2012M510552 and 2013T60175)
文摘A series of both unsupported and coal‐supported iron–oxygen compounds with gradual changes in microstructure were synthesized by a precipitation‐oxidation process at 20 to 70°C.The relationship between the microstructures and catalytic activities of these precursors during direct coal liquefaction was studied.The results show that the microstructure could be controlled through adjusting the synthesis temperature during the precipitation‐oxidation procedure,and that compounds synthesized at lower temperatures exhibit higher catalytic activity.As a result of their higher proportions ofγ‐FeOOH orα‐FeOOH crystalline phases,the unsupported iron–oxygen compounds synthesized at 20–30°C,which also had high specific surface areas and moisture levels,generate oil yields 4.5%–4.6%higher than those obtained with precursors synthesized at 70°C.It was also determined that higher oil yields were obtained when the catalytically‐active phase formed by the precursors during liquefaction(pyrrhotite,Fe1-xS)had smaller crystallites.Feed coal added as a carrier was found to efficiently disperse the active precursors,which in turn significantly improved the catalytic activity during coal liquefaction.
基金supported by Program for Scientific and Technological Renovation Talents in University of Henan Province (2009HASTIT023)the National Natural Science Foundation of China (50771042)
文摘Gray cast irons were inoculated with FeSi75+RE and FeSi75+Sr inoculants. The changes of apex angle of the drills before and after being used were used to evaluate machinability of gray cast irons. Effect of FeSi75+RE and FeSi75+Sr inoculants on mechanical properties, machinability and sensibility of gray cast iron used in cylinder block were investigated. Experimental results showed that gray cast iron treated with 60%FeSi75+40% RE inoculants exhibited tensile strength consistently at about 295 MPa along with good hardness and improved metallurgical quality. While gray cast iron inoculated with 20%FeSi75+80% Sr inoculants exhibited the best machinability, the lowest cross-section sensibility and the least microhardness difference. The tool flank wear of the drill increased correspondingly with the increase of the microhardness difference of the matrix, indicating the great effect of homogeneity of the matrix on the machinability of gray cast iron.
基金The paper is supported by the key Science and Technology Project of Henan Province(0424290064) the fund items of Henan Province Natural Science( 0411050100).
文摘Effect of several complex inoculants on mechanical properties, process-ability and sensibility of grey cast iron used in cylinder block were investigated. The experimental results showed that the grey cast iron treated with 60%FeSi75+40%RE complex inoculants has tensile strength consistently at about 295 MPa along with good hardness and improved metallurgy quality. While the grey cast iron inoculated with 20%FeSi75+80%Sr compound inoculants has the best process-ability, the lowest cross-section sensibility and the least microhardness difference. The wear amount of the drill increases correspondingly with the increase of the microhardness difference of matrix structure, indicating the great effect of homogeneousness of matrix structure in the grey cast iron on the machinability of the grey cast iron.
文摘The intercalatants presence of Fe-KCl graphite intercalation compound (Fe-KCl G/C) is in the form of independent crystalline phase. In this paper, its distribution in the carbon interlayer, crystalline status and powder sizes have been studied by X-ray diffraction (XRD) , small angle X-ray scattering (SAXS) and transmission electron microscope (TEM). And the partial crystal structure of the GIC has been researched too.
基金Project supported by the Science Fund of the Chinese Academy of Sciences.
文摘The cyclic voltammetry was used to investigate the electrode processes of Nd(III) reduced on iron electrode and Nd(III),Fe(II) reduced on molybdenum electrode in molten chlorides. The Nd-Fe and Nd-rich RE-Fe alloys contained rare earth up to 90wt% were prepared by consumable cathode and electrolytic codeposition. The mechanism of electrochemical formation of Nd-Fe alloy had been discussed.
基金the Natural Science Foundation of Hubei Province (No.2004ABA090)the Fund from the Chengguang Plan of Wuhan(No.20065004116-35)
文摘The graphite encapsulated a-Fe particles were prepared by reduction of stage-2 and stage-3 FeCI3 graphite intercalation compounds (GICs) with metallic potassium, X-ray diffraction analysis (XRD), energy dispersive X-ray spectroscopy (EDS) investigation and transmission electron microscopy (TEM) observation show that the reduction products of stage-2 FeCl3-GICs contains more abundant a-Fe nanoparticles than those of stage-3. High-resolution TEM (HRTEM) observation reveals that the nanoparticle of a-Fe was polycrystals or twins, which was real or quasi two-dimension in shape, and whose space orientation was strictly controlled by the graphene. Based on the experiment results, a possible growth model of the graphite encapsulated ct-Fe was proposed.