A modulated photoluminescence nanosensor was developed for the quantitative detection of formaldehyde with nitrogen-doped graphene quantum dots and melamine. The sensing system was based on the different activated eff...A modulated photoluminescence nanosensor was developed for the quantitative detection of formaldehyde with nitrogen-doped graphene quantum dots and melamine. The sensing system was based on the different activated effects of melamine and hydrogen peroxide on the photoluminescence intensity of nitrogendoped graphene quantum dots. Under the optimal conditions, the modulated photoluminescence sensing system can be used to detect formaldehyde with a good linear relationship between the nitrogen-doped graphene quantum dots photoluminescence difference and the concentration of formaldehyde. The novel sensing system provided new directions for the detection of formaldehyde with high selectivity and quick response.展开更多
Unlike inorganic quantum dots,fluorescent graphene quantum dots(GQDs)display excitation-dependent multiple color emission.In this study,we report N-doped GQDs(N-GQDs)with tailored single color emission by tuning p-con...Unlike inorganic quantum dots,fluorescent graphene quantum dots(GQDs)display excitation-dependent multiple color emission.In this study,we report N-doped GQDs(N-GQDs)with tailored single color emission by tuning p-conjugation degree,which is comparable to the inorganic quantum dot.Starting from citric acid and diethylenetriamine,as prepared N-GQDs display blue,green,and yellow light emission by changing the reaction solvent from water,dimethylformamide(DMF),and solvent free.The X-ray photoelectron spectroscopy,ultraviolet-visible spectra results clearly show the N-GQDs with blue emission(N-GQDs-B)have relatively short effective conjugation length and more carboxyl group because H_(2)O is a polar protic solvent,which tends to donate proton to the reagent to depress the H_(2)O elimination reaction.On the other hand,the polar aprotic solvent(DMF)cannot donate hydrogen,the elimination of H_(2)O is promoted and more nitrogen units enter GQD framework.With the increase of effective p-conjugation length and N content,the emission band of N-GQDS red-shifts to green and yellow.We also demonstrate that N-GQDs could be a potential great biomarker for fluorescent bioimaging.展开更多
The promising solar irradiated photocatalyst by pairing of bismuth oxide quantum dots(BQDs)doped TiO_(2)with nitrogen doped graphene oxide(NGO)nanocomposite(NGO/BQDs-TiO_(2))was fabricated.It was used for degradation ...The promising solar irradiated photocatalyst by pairing of bismuth oxide quantum dots(BQDs)doped TiO_(2)with nitrogen doped graphene oxide(NGO)nanocomposite(NGO/BQDs-TiO_(2))was fabricated.It was used for degradation of organic pollutants like 2,4-dichlorophenol(2,4-DCP)and stable dyes,i.e.Rhodamine B and Congo Red.X-ray diffraction(XRD)profile of NGO showed reduction in oxygenic functional groups and restoring of graphitic crystal structure.The characteristic diffraction peaks of TiO_(2)and its composites showed crystalline anatase TiO_(2).Morphological images represent spherical shaped TiO_(2)evenly covered with BQDs spread on NGO sheet.The surface linkages of NO-O-Ti,C-O-Ti,Bi-O-Ti and vibrational modes are observed by Fourier transform infrared spectroscopy(FTIR)and Raman studies.BQDs and NGO modified TiO_(2)results into red shifting in visible region as studied in diffused reflectance spectroscopy(DRS).NGO and BQDs in TiO_(2)are linked with defect centers which reduced the recombination of free charge carriers by quenching of photoluminescence(PL)intensities.X-ray photoelectron spectroscopy(XPS)shows that no peak related to C-O in NGO/BQDs-TiO_(2)is observed.This indicated that doping of nitrogen into GO has reduced some oxygen functional groups.Nitrogen functionalities in NGO and photosensitizing effect of BQDs in ternary composite have improved photocatalytic activity against organic pollutants.Intermediate byproducts during photo degradation process of 2,4-DCP were studied through high performance liquid chromatography(HPLC).Study of radical scavengers indicated that O_(2)^(·-) has significant role for degradation of 2,4-DCP.Our investigations propose that fabricated nanohybrid architecture has potential for degradation of environmental pollutions.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.21275063 and 21005029)the Development and Reform Commission of Jilin Province(No.2015Y048)the Youth Science Fund of Jilin Province(20140520081JH)
文摘A modulated photoluminescence nanosensor was developed for the quantitative detection of formaldehyde with nitrogen-doped graphene quantum dots and melamine. The sensing system was based on the different activated effects of melamine and hydrogen peroxide on the photoluminescence intensity of nitrogendoped graphene quantum dots. Under the optimal conditions, the modulated photoluminescence sensing system can be used to detect formaldehyde with a good linear relationship between the nitrogen-doped graphene quantum dots photoluminescence difference and the concentration of formaldehyde. The novel sensing system provided new directions for the detection of formaldehyde with high selectivity and quick response.
基金The authors thank the National Natural Science Foundation of China(No.21301166,21201159,61306081,and 61176016)Science and Technology Department of Jilin Province(No.20130522127JH)are gratefully acknowledged+1 种基金ZS thanks the support of the‘Hundred Talent Program’of CAS and Innovation and Entrepreneurship Program of JilinThe project was supported by Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry and the open research fund program of the State Key Laboratory of Luminescence and Applications.
文摘Unlike inorganic quantum dots,fluorescent graphene quantum dots(GQDs)display excitation-dependent multiple color emission.In this study,we report N-doped GQDs(N-GQDs)with tailored single color emission by tuning p-conjugation degree,which is comparable to the inorganic quantum dot.Starting from citric acid and diethylenetriamine,as prepared N-GQDs display blue,green,and yellow light emission by changing the reaction solvent from water,dimethylformamide(DMF),and solvent free.The X-ray photoelectron spectroscopy,ultraviolet-visible spectra results clearly show the N-GQDs with blue emission(N-GQDs-B)have relatively short effective conjugation length and more carboxyl group because H_(2)O is a polar protic solvent,which tends to donate proton to the reagent to depress the H_(2)O elimination reaction.On the other hand,the polar aprotic solvent(DMF)cannot donate hydrogen,the elimination of H_(2)O is promoted and more nitrogen units enter GQD framework.With the increase of effective p-conjugation length and N content,the emission band of N-GQDS red-shifts to green and yellow.We also demonstrate that N-GQDs could be a potential great biomarker for fluorescent bioimaging.
基金International Islamic UniversityPakistan Institute of Engineering and Applied Sciences+1 种基金Higher Education Commission of Pakistan(NRPU grant No.3660)Aalto University Finland。
文摘The promising solar irradiated photocatalyst by pairing of bismuth oxide quantum dots(BQDs)doped TiO_(2)with nitrogen doped graphene oxide(NGO)nanocomposite(NGO/BQDs-TiO_(2))was fabricated.It was used for degradation of organic pollutants like 2,4-dichlorophenol(2,4-DCP)and stable dyes,i.e.Rhodamine B and Congo Red.X-ray diffraction(XRD)profile of NGO showed reduction in oxygenic functional groups and restoring of graphitic crystal structure.The characteristic diffraction peaks of TiO_(2)and its composites showed crystalline anatase TiO_(2).Morphological images represent spherical shaped TiO_(2)evenly covered with BQDs spread on NGO sheet.The surface linkages of NO-O-Ti,C-O-Ti,Bi-O-Ti and vibrational modes are observed by Fourier transform infrared spectroscopy(FTIR)and Raman studies.BQDs and NGO modified TiO_(2)results into red shifting in visible region as studied in diffused reflectance spectroscopy(DRS).NGO and BQDs in TiO_(2)are linked with defect centers which reduced the recombination of free charge carriers by quenching of photoluminescence(PL)intensities.X-ray photoelectron spectroscopy(XPS)shows that no peak related to C-O in NGO/BQDs-TiO_(2)is observed.This indicated that doping of nitrogen into GO has reduced some oxygen functional groups.Nitrogen functionalities in NGO and photosensitizing effect of BQDs in ternary composite have improved photocatalytic activity against organic pollutants.Intermediate byproducts during photo degradation process of 2,4-DCP were studied through high performance liquid chromatography(HPLC).Study of radical scavengers indicated that O_(2)^(·-) has significant role for degradation of 2,4-DCP.Our investigations propose that fabricated nanohybrid architecture has potential for degradation of environmental pollutions.