Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions...Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future.展开更多
Recently procured outstanding achievements in iron and steel industry in China are presented by data or facts in steel output, energy consumption, technical and economical indicators and advanced technologies that are...Recently procured outstanding achievements in iron and steel industry in China are presented by data or facts in steel output, energy consumption, technical and economical indicators and advanced technologies that are being adopted. The latest achievements in refractonries for this biggest user industry are reviewed, covering new refractories for CDQ coke oven, BF hearth, AOD Lining, long life tundish, SEN for clean steel making and regenerative reheating furnace . The reciprocal relationship is obvious that the rapid development of iron and steel industry has given an impetus to the advance of refractories industry, which in return has contributed greatly to the former.展开更多
The development,physicochemical properties and application effectiveness of new high performance refractory products used in iron and steel industry in recent years are summarizedThe new products include carbon-contai...The development,physicochemical properties and application effectiveness of new high performance refractory products used in iron and steel industry in recent years are summarizedThe new products include carbon-containing oxides,non-oxides,functional refractories,low cement and ultra-low cement castables etc.It is pointed out that quality of refractory products needs to be improved and high performance varieties be developed.Meanwhile,research should be done on composite materials and composite structures,equipment techniques and optimization control of refractory production should be strengthened as well.展开更多
The paper briefs the recent development of China' s Iron & Steel Industry from the view of a refractorie., worker. Some data and statistics have been revealed in the paper including total output of steel, geological...The paper briefs the recent development of China' s Iron & Steel Industry from the view of a refractorie., worker. Some data and statistics have been revealed in the paper including total output of steel, geological distribution of key steel enterprises, productivity, facilities, technical and economical indices as well as technical advance achieved in. the last ten years. Structural adjustment and consolidation occurred in China's Iron & Steel industy has also been described. The views on how much steel is demanded in China in the near future advanced by a steel expert has been accepted as the conclusion of the paper.展开更多
Founded in July 1962.Maanshan Iron and Steel DesignInstitute is an important design institute directly under theMinistry of Metallurgical Industry,and a state Class A designinstitute registered in World Bank and Asia ...Founded in July 1962.Maanshan Iron and Steel DesignInstitute is an important design institute directly under theMinistry of Metallurgical Industry,and a state Class A designinstitute registered in World Bank and Asia DevelopmentBank,also a member unit of China International ConsultantsCompany and China Metallurgical Construction GroupCompany.It boasts a staff of 1.500,including 1,200 engineeringand technical people(400 senior engineers included).It has 22research offices,such as iron-smelting,steel making,steel-rolling,mining,dressing and sintering,34 engineering designfaculties,has well-equipped electronic computer stations,experimenting labs and printing factories,and has divisions inShanghai and Zhuhai. The institute is engaged in the engineering design,technical consultancy,supervision and general contract展开更多
The fact-developing iron and steel industry provides the base for China economy to grow continually, stably and healthily for many years. This paper analyzes the situation and the disparity, which the iron and steel i...The fact-developing iron and steel industry provides the base for China economy to grow continually, stably and healthily for many years. This paper analyzes the situation and the disparity, which the iron and steel industry faces, and attests that the new industrialization path is the strategic choice for the Chinese iron and steel industry to develop continuously, and carries on the thorough discussion to the connotation of this choice.展开更多
The iron and steel industry(ISI) involves high energy consumption and high pollution. ISI in China, a leading country in the ISI,consumed 15% of the country’s total energy and produced more than 50% of the global ISI...The iron and steel industry(ISI) involves high energy consumption and high pollution. ISI in China, a leading country in the ISI,consumed 15% of the country’s total energy and produced more than 50% of the global ISI’s carbon emissions. Therefore, in the context of global low-carbon economy and emission reduction requirements, low-carbon smelting technology in the ISI has attracted increasingly more attention in China. This review summarizes the current status of carbon emissions and energy consumption in China’s ISI and discusses the development status and prospects of low-carbon ironmaking technology. The main route to effectively reducing carbon emissions is to develop a gas-based direct reduction process and replace sintering with pelletizing, both of which focus on developing pelletizing technology. However,the challenge of pelletizing process development is to obtain high-quality iron concentrates. Consequently, the present paper also summarizes the development status of China’s mineral processing technology, including fine-grained mineral processing technology, magnetization roasting technology, and flotation collector application. This paper aims to provide a theoretical basis for the low-carbon development of China’s ISI in terms of a dressing–smelting combination.展开更多
China is now facing huge pressure from both the domestic concern of energy security and the global community's call for emission reduction commitment.As one of the major energy consumers and greenhouse gas emitter...China is now facing huge pressure from both the domestic concern of energy security and the global community's call for emission reduction commitment.As one of the major energy consumers and greenhouse gas emitters,China's iron and steel industry has a huge clean development mechanism(CDM) potential.This article both quantitatively and qualitatively analyzes the current status of CDM project activities in the iron and steel industry in China,including characteristics of approved project types,applicable methodologies,and potential technology fields.From the perspective of project implementation,the article summarizes development barriers such as high investment risk,difficulty in project identification,strict requirements on PPDs,long registration waiting time,and etc.Policy suggestions are also put forwarded to help better promote the development of CDM projects in the iron and steel industry.展开更多
Iron & Steel Industry China's outputs of crude steel, steel products, coke and ferrous alloys in 2012 were 716.54 million tons (up 3.1% YOY), 051.86 million tons (up 7.7% YOY), 443.23 million tons (up 5.2% YOY...Iron & Steel Industry China's outputs of crude steel, steel products, coke and ferrous alloys in 2012 were 716.54 million tons (up 3.1% YOY), 051.86 million tons (up 7.7% YOY), 443.23 million tons (up 5.2% YOY) and 31.29 million tons (up 15% YOY),展开更多
The iron and steel industry generally features the characteristics of large volume of energy consumption, multiple sorts of energy medium, complex secondary conversion, more recyclable extra energy, and the energy man...The iron and steel industry generally features the characteristics of large volume of energy consumption, multiple sorts of energy medium, complex secondary conversion, more recyclable extra energy, and the energy management of the field may involve the entire personnel, process and system, covering all links from designing, purchasing, energy storage, processing and conversion, distribution, energy use and extra energy recycling. The implementation guidelines summarizes the energy management experience and results and provide a systematic approach for the implementation of GB/T 23331-2012 and GB/T 29456-2012, sharing svstematic instructions and suggestions for the implementing paths and methods of creating, implementing, maintaining and improving the energy management system (EnMS) at the enterprise level.展开更多
China's economic growth is heavily influenced by exports, while reconciling environmental regulation and economic growth requires handling the relationship between environmental regulation and industrial competitiven...China's economic growth is heavily influenced by exports, while reconciling environmental regulation and economic growth requires handling the relationship between environmental regulation and industrial competitiveness well. The effects of environmental regulation on industrial competitiveness are largely subject to the institutional design of environmental regulation. Despite numerous studies on the relationship between environmental regulation and industrial competitiveness, a consensus has yet to be reached. Aside from differences in research methodology, these studies failed to give sufficient consideration to the impact of environmental regulation on industrial competitiveness. Such effects can be negative or positive depending on the design of environmental regulatory policy. This paper has investigated the relationship between environmental regulation and the competitiveness of China's iron and steel industry and discovered that tighter environmental regulation does not diminish the competitiveness of the iron and steel industry since the policy design of environmental regulation accommodates the tolerance of advanced production capacity and includes a reasonable cost sharing mechanism. This discovery is of important reference for China to develop rational policy design to balance the relationship between environmental regulation and industrial competitiveness.展开更多
Fossil-fuel burning greenhouse gas induced global warming has been recognized as global environmental problems,reduce and ultimately control the energy production in the use of CO_2 emissions, global energy production...Fossil-fuel burning greenhouse gas induced global warming has been recognized as global environmental problems,reduce and ultimately control the energy production in the use of CO_2 emissions, global energy production will be a major challenge.As a highly intensive materials and energy,iron and steel enterprises,need to be invested to produce one ton of steel about two tons of material and 0.7 t of standard coal energy,and while producing two tons of CO_2.Therefore,reducing CO_2 emissions from iron and steel industry has become the focus of the global steel industry.This paper describes an integrated domestic and international measures to control carbon dioxide emissions research progress and future technology trends, with emphasis on the domestic steel industry emissions of carbon dioxide status of technology development and industrialization of implementation of the proposed on this basis,including dry quenching technology, gas,power generation,coal moisture control technology,blast furnace injection plastics technology,the use of coking process for treating municipal waste plastics technology,sintering heat generation,low pressure saturated steam for power generation,metallurgical slag heat recovery technology,coke oven gas hydrogen technology and the other key technologies energy saving technologies,including the development,promotion and popularization of the steel industry in China will be the CO_2 emission reduction technology direction and focus.At this stage,the Chinese steel industry can be improved the energy efficiency and recycling of waste heat and energy,reduce unit GDP,CO_2 emissions;but in the long run,should increase CO_2 capture and storage on the input of technology can possible effective control of the adverse effects of CO_2 emissions.展开更多
Outdated Capacity to Be Eliminated The iron and steel capacity has reached 660 million tons in China, but the actual market requirement is only 470 million tons, so the excess-capacity is 190 million tons. National De...Outdated Capacity to Be Eliminated The iron and steel capacity has reached 660 million tons in China, but the actual market requirement is only 470 million tons, so the excess-capacity is 190 million tons. National Development and Reform Commission of China declared the new capacity and expansion capacity in iron and steel industry will not be authorized. 400 m^3 or below blast furnaces and converters and 30 t or below electric furnaces will be eliminated by the end of 2011.展开更多
Assessing the iron and steel industry's(ISI)impact on climate change and environmental health is vital,particularly in China,where this sector significantly influences air quality and CO_(2)emissions.There is a la...Assessing the iron and steel industry's(ISI)impact on climate change and environmental health is vital,particularly in China,where this sector significantly influences air quality and CO_(2)emissions.There is a lack of comprehensive analyses that consider the environmental and health burdens of manufacturing processes for ISI enterprises.Here,we present an integrated emission inventory that encompasses air pollutants and CO_(2)emissions from 811 ISI enterprises and five key manufacturing processes in 2020.Our analysis shows that sintering is the primary source of air pollution in the ISI.It contributes 71%of SO_(2),73%of NO_(x),and 54%of PM_(2.5)emissions.On the other hand,81%of total CO_(2)emissions come from blast furnaces.Significantly,the contributions of ISI have resulted in an increase of 3.6 mg m^(-3)in national population-weighted PM_(2.5)concentration,causing approximately 59,035 premature deaths in 2020.Emissions from Hebei,Jiangsu,Shandong,Shanxi,and Inner Mongolia provinces contributed to 48%of PM_(2.5)-related deaths in China.Moreover,the transportation of air pollutants across provincial borders highlights a concerning trend of environmental health inequality.Based on the research findings,it is crucial for ISI manufacturers to prioritize the removal of outdated production capacities and adopt energy-efficient and advanced techniques,along with ultra-low emission technologies.This is particularly important for those manufacturers with substantial environmental footprints.These transformative actions are essential in mitigating the environmental and health impacts in the affected regions.展开更多
基金supported by the National Key Research and Development Program of China(2019YFC1904800)the National Natural Science Foundation of China(72274105).
文摘Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future.
文摘Recently procured outstanding achievements in iron and steel industry in China are presented by data or facts in steel output, energy consumption, technical and economical indicators and advanced technologies that are being adopted. The latest achievements in refractonries for this biggest user industry are reviewed, covering new refractories for CDQ coke oven, BF hearth, AOD Lining, long life tundish, SEN for clean steel making and regenerative reheating furnace . The reciprocal relationship is obvious that the rapid development of iron and steel industry has given an impetus to the advance of refractories industry, which in return has contributed greatly to the former.
文摘The development,physicochemical properties and application effectiveness of new high performance refractory products used in iron and steel industry in recent years are summarizedThe new products include carbon-containing oxides,non-oxides,functional refractories,low cement and ultra-low cement castables etc.It is pointed out that quality of refractory products needs to be improved and high performance varieties be developed.Meanwhile,research should be done on composite materials and composite structures,equipment techniques and optimization control of refractory production should be strengthened as well.
文摘The paper briefs the recent development of China' s Iron & Steel Industry from the view of a refractorie., worker. Some data and statistics have been revealed in the paper including total output of steel, geological distribution of key steel enterprises, productivity, facilities, technical and economical indices as well as technical advance achieved in. the last ten years. Structural adjustment and consolidation occurred in China's Iron & Steel industy has also been described. The views on how much steel is demanded in China in the near future advanced by a steel expert has been accepted as the conclusion of the paper.
文摘Founded in July 1962.Maanshan Iron and Steel DesignInstitute is an important design institute directly under theMinistry of Metallurgical Industry,and a state Class A designinstitute registered in World Bank and Asia DevelopmentBank,also a member unit of China International ConsultantsCompany and China Metallurgical Construction GroupCompany.It boasts a staff of 1.500,including 1,200 engineeringand technical people(400 senior engineers included).It has 22research offices,such as iron-smelting,steel making,steel-rolling,mining,dressing and sintering,34 engineering designfaculties,has well-equipped electronic computer stations,experimenting labs and printing factories,and has divisions inShanghai and Zhuhai. The institute is engaged in the engineering design,technical consultancy,supervision and general contract
文摘The fact-developing iron and steel industry provides the base for China economy to grow continually, stably and healthily for many years. This paper analyzes the situation and the disparity, which the iron and steel industry faces, and attests that the new industrialization path is the strategic choice for the Chinese iron and steel industry to develop continuously, and carries on the thorough discussion to the connotation of this choice.
基金financially supported by the Natural Science Foundation China (No.52274343)the Youth Natural Science Foundation China (No.51904347)the China Baowu Low Carbon Metallurgy Innovation Foundation (No.BWLCF202102)。
文摘The iron and steel industry(ISI) involves high energy consumption and high pollution. ISI in China, a leading country in the ISI,consumed 15% of the country’s total energy and produced more than 50% of the global ISI’s carbon emissions. Therefore, in the context of global low-carbon economy and emission reduction requirements, low-carbon smelting technology in the ISI has attracted increasingly more attention in China. This review summarizes the current status of carbon emissions and energy consumption in China’s ISI and discusses the development status and prospects of low-carbon ironmaking technology. The main route to effectively reducing carbon emissions is to develop a gas-based direct reduction process and replace sintering with pelletizing, both of which focus on developing pelletizing technology. However,the challenge of pelletizing process development is to obtain high-quality iron concentrates. Consequently, the present paper also summarizes the development status of China’s mineral processing technology, including fine-grained mineral processing technology, magnetization roasting technology, and flotation collector application. This paper aims to provide a theoretical basis for the low-carbon development of China’s ISI in terms of a dressing–smelting combination.
文摘China is now facing huge pressure from both the domestic concern of energy security and the global community's call for emission reduction commitment.As one of the major energy consumers and greenhouse gas emitters,China's iron and steel industry has a huge clean development mechanism(CDM) potential.This article both quantitatively and qualitatively analyzes the current status of CDM project activities in the iron and steel industry in China,including characteristics of approved project types,applicable methodologies,and potential technology fields.From the perspective of project implementation,the article summarizes development barriers such as high investment risk,difficulty in project identification,strict requirements on PPDs,long registration waiting time,and etc.Policy suggestions are also put forwarded to help better promote the development of CDM projects in the iron and steel industry.
文摘Iron & Steel Industry China's outputs of crude steel, steel products, coke and ferrous alloys in 2012 were 716.54 million tons (up 3.1% YOY), 051.86 million tons (up 7.7% YOY), 443.23 million tons (up 5.2% YOY) and 31.29 million tons (up 15% YOY),
文摘The iron and steel industry generally features the characteristics of large volume of energy consumption, multiple sorts of energy medium, complex secondary conversion, more recyclable extra energy, and the energy management of the field may involve the entire personnel, process and system, covering all links from designing, purchasing, energy storage, processing and conversion, distribution, energy use and extra energy recycling. The implementation guidelines summarizes the energy management experience and results and provide a systematic approach for the implementation of GB/T 23331-2012 and GB/T 29456-2012, sharing svstematic instructions and suggestions for the implementing paths and methods of creating, implementing, maintaining and improving the energy management system (EnMS) at the enterprise level.
文摘China's economic growth is heavily influenced by exports, while reconciling environmental regulation and economic growth requires handling the relationship between environmental regulation and industrial competitiveness well. The effects of environmental regulation on industrial competitiveness are largely subject to the institutional design of environmental regulation. Despite numerous studies on the relationship between environmental regulation and industrial competitiveness, a consensus has yet to be reached. Aside from differences in research methodology, these studies failed to give sufficient consideration to the impact of environmental regulation on industrial competitiveness. Such effects can be negative or positive depending on the design of environmental regulatory policy. This paper has investigated the relationship between environmental regulation and the competitiveness of China's iron and steel industry and discovered that tighter environmental regulation does not diminish the competitiveness of the iron and steel industry since the policy design of environmental regulation accommodates the tolerance of advanced production capacity and includes a reasonable cost sharing mechanism. This discovery is of important reference for China to develop rational policy design to balance the relationship between environmental regulation and industrial competitiveness.
文摘Fossil-fuel burning greenhouse gas induced global warming has been recognized as global environmental problems,reduce and ultimately control the energy production in the use of CO_2 emissions, global energy production will be a major challenge.As a highly intensive materials and energy,iron and steel enterprises,need to be invested to produce one ton of steel about two tons of material and 0.7 t of standard coal energy,and while producing two tons of CO_2.Therefore,reducing CO_2 emissions from iron and steel industry has become the focus of the global steel industry.This paper describes an integrated domestic and international measures to control carbon dioxide emissions research progress and future technology trends, with emphasis on the domestic steel industry emissions of carbon dioxide status of technology development and industrialization of implementation of the proposed on this basis,including dry quenching technology, gas,power generation,coal moisture control technology,blast furnace injection plastics technology,the use of coking process for treating municipal waste plastics technology,sintering heat generation,low pressure saturated steam for power generation,metallurgical slag heat recovery technology,coke oven gas hydrogen technology and the other key technologies energy saving technologies,including the development,promotion and popularization of the steel industry in China will be the CO_2 emission reduction technology direction and focus.At this stage,the Chinese steel industry can be improved the energy efficiency and recycling of waste heat and energy,reduce unit GDP,CO_2 emissions;but in the long run,should increase CO_2 capture and storage on the input of technology can possible effective control of the adverse effects of CO_2 emissions.
文摘Outdated Capacity to Be Eliminated The iron and steel capacity has reached 660 million tons in China, but the actual market requirement is only 470 million tons, so the excess-capacity is 190 million tons. National Development and Reform Commission of China declared the new capacity and expansion capacity in iron and steel industry will not be authorized. 400 m^3 or below blast furnaces and converters and 30 t or below electric furnaces will be eliminated by the end of 2011.
基金supported by the National Natural Science Foundation of China[Grant No.72174126,72243008].
文摘Assessing the iron and steel industry's(ISI)impact on climate change and environmental health is vital,particularly in China,where this sector significantly influences air quality and CO_(2)emissions.There is a lack of comprehensive analyses that consider the environmental and health burdens of manufacturing processes for ISI enterprises.Here,we present an integrated emission inventory that encompasses air pollutants and CO_(2)emissions from 811 ISI enterprises and five key manufacturing processes in 2020.Our analysis shows that sintering is the primary source of air pollution in the ISI.It contributes 71%of SO_(2),73%of NO_(x),and 54%of PM_(2.5)emissions.On the other hand,81%of total CO_(2)emissions come from blast furnaces.Significantly,the contributions of ISI have resulted in an increase of 3.6 mg m^(-3)in national population-weighted PM_(2.5)concentration,causing approximately 59,035 premature deaths in 2020.Emissions from Hebei,Jiangsu,Shandong,Shanxi,and Inner Mongolia provinces contributed to 48%of PM_(2.5)-related deaths in China.Moreover,the transportation of air pollutants across provincial borders highlights a concerning trend of environmental health inequality.Based on the research findings,it is crucial for ISI manufacturers to prioritize the removal of outdated production capacities and adopt energy-efficient and advanced techniques,along with ultra-low emission technologies.This is particularly important for those manufacturers with substantial environmental footprints.These transformative actions are essential in mitigating the environmental and health impacts in the affected regions.