Well-crystallized FeSbO 4 nanorods with rutile-like structure are synthesized through a solid-state reaction and used as cathode material of Li-ion battery for the first time.The obtained nanorods can react with 11 Li...Well-crystallized FeSbO 4 nanorods with rutile-like structure are synthesized through a solid-state reaction and used as cathode material of Li-ion battery for the first time.The obtained nanorods can react with 11 Li-ions per FeSbO 4 unit with a specific discharge capacity of 1 100 1 mAh g between 0.1 and 2.0 V.Three discharge plateaus can be observed during the fully discharging process,but the reversible reaction with 1 Li occurs between 1.5 V and 4.5 V vs.Li + /Li,and the reversible capacity is only 50-80 1 mAh g.FeSbO 4 nanorods have a stable cyclic performance between 1.5 V and 4.5 V and it can be used as cathode material for rechargeable Li-ion battery.展开更多
基金Supported by the Program for New Century Excellent Talents in University(NCET-07-0637)the Fundamental Research Funds for the Central Universities(2081003) of China
文摘Well-crystallized FeSbO 4 nanorods with rutile-like structure are synthesized through a solid-state reaction and used as cathode material of Li-ion battery for the first time.The obtained nanorods can react with 11 Li-ions per FeSbO 4 unit with a specific discharge capacity of 1 100 1 mAh g between 0.1 and 2.0 V.Three discharge plateaus can be observed during the fully discharging process,but the reversible reaction with 1 Li occurs between 1.5 V and 4.5 V vs.Li + /Li,and the reversible capacity is only 50-80 1 mAh g.FeSbO 4 nanorods have a stable cyclic performance between 1.5 V and 4.5 V and it can be used as cathode material for rechargeable Li-ion battery.