Iron-chromium redox flow batteries(ICRFBs)have emerged as promising energy storage devices due to their safety,environmental protection,and reliable performance.The carbon cloth(CC),often used in ICRFBs as the electro...Iron-chromium redox flow batteries(ICRFBs)have emerged as promising energy storage devices due to their safety,environmental protection,and reliable performance.The carbon cloth(CC),often used in ICRFBs as the electrode,provides a suitable platform for electrochemical processes owing to its high surface area and interconnected porous structure.However,the CC electrodes have issues,such as,insufficient electron transfer performance,which limits their industrial application.Here,we employed silicic acid etching to carve dense nano-porous structures on the surface of CC electrodes based on the favorable design of ICRFBs and the fundamental principles of electrode polarization losses.As a result,we developed a multifunctional carbon cloth electrode with abundant vacancies,notably enhancing the performance of the battery.The fabricated electrode showcased a wealth of defect sites and superior electronic transport properties,offering an extensive and effective reaction area for rapidly flowing electrolytes.With an electrode compression ratio of 40%and the highest current density in ICRFBs so far(140 mA·cm^(-2)),the battery achieved the average energy efficiency of 81.3%,11.24%enhancement over the previously published work.Furthermore,throughout 100 charge-discharge cycles,the average energy efficiency degradation was negligible(~0.04%),which has the potential to become the most promising candidate for large-scale and long-term electrochemical energy storage applications.展开更多
铁铬氧化还原液流电池(ICRFB)是一种具有成本效益的可规模化储能系统,其利用资源丰富、低成本的铬和铁作为电解液的活性物质。然而,ICRFB存在Cr^(3+)/Cr^(2+)电化学活性低、负极易产生严重的析氢反应(HER)等问题。本文报道了一种简单的...铁铬氧化还原液流电池(ICRFB)是一种具有成本效益的可规模化储能系统,其利用资源丰富、低成本的铬和铁作为电解液的活性物质。然而,ICRFB存在Cr^(3+)/Cr^(2+)电化学活性低、负极易产生严重的析氢反应(HER)等问题。本文报道了一种简单的合成策略,即通过自聚合和湿化学还原方法结合煅烧处理,在氮掺杂石墨毡(GF)表面沉积了非晶态铋(Bi)纳米颗粒(NPs),其作为ICRFB的负极材料时可展示出高效的电化学性能。生成的BiNPs与H+形成中间体,极大地抑制了HER副反应。此外,Bi的引入和GF表面的N掺杂通过协同作用显著提高了Fe^(2+)/Fe^(3+)和Cr^(3+)/Cr^(2+)的电化学活性,降低了电荷传递电阻,提高了反应传质速率。在不同的电流密度下,经25次循环,库仑效率仍高达97.7%。在60.0 mA cm^(-2)电流密度下,能量效率达到85.8%,超过了许多其他报道的材料。循环100次后容量达到862.7 mAh/L,约为GF的5.3倍。展开更多
基金the National Natural Science Foundation of China(Nos.22308378,22308380,52211530034).
文摘Iron-chromium redox flow batteries(ICRFBs)have emerged as promising energy storage devices due to their safety,environmental protection,and reliable performance.The carbon cloth(CC),often used in ICRFBs as the electrode,provides a suitable platform for electrochemical processes owing to its high surface area and interconnected porous structure.However,the CC electrodes have issues,such as,insufficient electron transfer performance,which limits their industrial application.Here,we employed silicic acid etching to carve dense nano-porous structures on the surface of CC electrodes based on the favorable design of ICRFBs and the fundamental principles of electrode polarization losses.As a result,we developed a multifunctional carbon cloth electrode with abundant vacancies,notably enhancing the performance of the battery.The fabricated electrode showcased a wealth of defect sites and superior electronic transport properties,offering an extensive and effective reaction area for rapidly flowing electrolytes.With an electrode compression ratio of 40%and the highest current density in ICRFBs so far(140 mA·cm^(-2)),the battery achieved the average energy efficiency of 81.3%,11.24%enhancement over the previously published work.Furthermore,throughout 100 charge-discharge cycles,the average energy efficiency degradation was negligible(~0.04%),which has the potential to become the most promising candidate for large-scale and long-term electrochemical energy storage applications.
文摘铁铬氧化还原液流电池(ICRFB)是一种具有成本效益的可规模化储能系统,其利用资源丰富、低成本的铬和铁作为电解液的活性物质。然而,ICRFB存在Cr^(3+)/Cr^(2+)电化学活性低、负极易产生严重的析氢反应(HER)等问题。本文报道了一种简单的合成策略,即通过自聚合和湿化学还原方法结合煅烧处理,在氮掺杂石墨毡(GF)表面沉积了非晶态铋(Bi)纳米颗粒(NPs),其作为ICRFB的负极材料时可展示出高效的电化学性能。生成的BiNPs与H+形成中间体,极大地抑制了HER副反应。此外,Bi的引入和GF表面的N掺杂通过协同作用显著提高了Fe^(2+)/Fe^(3+)和Cr^(3+)/Cr^(2+)的电化学活性,降低了电荷传递电阻,提高了反应传质速率。在不同的电流密度下,经25次循环,库仑效率仍高达97.7%。在60.0 mA cm^(-2)电流密度下,能量效率达到85.8%,超过了许多其他报道的材料。循环100次后容量达到862.7 mAh/L,约为GF的5.3倍。