Highly photoluminescent nitrogen and sulfur co-doped carbon nanoparticles(CNPs) ca. 56 nm have been prepared through a green one-step hydrothermal synthesis route by using millet powder as carbon sources, in which t...Highly photoluminescent nitrogen and sulfur co-doped carbon nanoparticles(CNPs) ca. 56 nm have been prepared through a green one-step hydrothermal synthesis route by using millet powder as carbon sources, in which the nitrogen and sulfur co-doping improves the photoluminescent efficiency of the CNPs. The as-prepared CNPs display excellent fluorescent properties and low biotoxicity with a relatively high quantum yield of 30.4%, which have been applied for bioimaging and highly sensitive and selective detection of iron(III) ions.展开更多
Metal ions are physiologically essential,but excessive metal ions may cause severe risk to plants and animals.Here,we prepared gold nanoclusters(Au NCs) protected by 11-mercaptoundecanoic acid(11-MUA),which have e...Metal ions are physiologically essential,but excessive metal ions may cause severe risk to plants and animals.Here,we prepared gold nanoclusters(Au NCs) protected by 11-mercaptoundecanoic acid(11-MUA),which have excellent fluorescence properties for the detection of metal ions.The results showed that the copper ions(Cu^(2+)) and iron ions(Fe^(3+)) in the solution have obvious quenching effect on the fluorescence intensity of Au NCs.The detection range of Fe^(3+) was 0.8-4.5 mmol/L(R^2= 0.992) and 4.5-11.0 mmol/L(R^2= 0.997).And Cu^(2+) has a lower linear range(0.1-1.0 mmol/L,R2= 0.993).When EDTA was added into the reaction system,it was observed that the quenching effect of Cu^(2+) and Fe^(3+)on Au NCs showed different phenomenon.Then,the effect of metal ions on the fluorescence of Au NCs was investigated.The selective detection of Cu(2+) was achieved by EDTA masking of Fe^(3+).In addition,we realized the metal ions detection application of Au NCs in the serum展开更多
基金financial supports of the National Natural Science Foundation of China(No.21535006)the Fundamental Research Funds for the Central Universities(No.XDJK2015B029)
文摘Highly photoluminescent nitrogen and sulfur co-doped carbon nanoparticles(CNPs) ca. 56 nm have been prepared through a green one-step hydrothermal synthesis route by using millet powder as carbon sources, in which the nitrogen and sulfur co-doping improves the photoluminescent efficiency of the CNPs. The as-prepared CNPs display excellent fluorescent properties and low biotoxicity with a relatively high quantum yield of 30.4%, which have been applied for bioimaging and highly sensitive and selective detection of iron(III) ions.
基金financial support from the National Natural Science Foundation of China(Nos.61571426,61671435)the National Key Technology R&D Program(No.2015BAI23H00)+1 种基金Beijing Natural Science Foundation(No.4161003)Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
文摘Metal ions are physiologically essential,but excessive metal ions may cause severe risk to plants and animals.Here,we prepared gold nanoclusters(Au NCs) protected by 11-mercaptoundecanoic acid(11-MUA),which have excellent fluorescence properties for the detection of metal ions.The results showed that the copper ions(Cu^(2+)) and iron ions(Fe^(3+)) in the solution have obvious quenching effect on the fluorescence intensity of Au NCs.The detection range of Fe^(3+) was 0.8-4.5 mmol/L(R^2= 0.992) and 4.5-11.0 mmol/L(R^2= 0.997).And Cu^(2+) has a lower linear range(0.1-1.0 mmol/L,R2= 0.993).When EDTA was added into the reaction system,it was observed that the quenching effect of Cu^(2+) and Fe^(3+)on Au NCs showed different phenomenon.Then,the effect of metal ions on the fluorescence of Au NCs was investigated.The selective detection of Cu(2+) was achieved by EDTA masking of Fe^(3+).In addition,we realized the metal ions detection application of Au NCs in the serum