期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
An amorphous manganese iron oxide hollow nanocube cathode for aqueous zinc ion batteries
1
作者 Fengyang Jing Chade Lv +6 位作者 Liangliang Xu Yaru Shang Jian Pei Pin Song Yuanheng Wang Gang Chen Chunshuang Yan 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期314-321,I0008,共9页
Aqueous zinc ion batteries(ZIBs) are attracting considerable attentions for practical energy storage because of their low cost and high safety.Nevertheless,the traditional manganese oxide cathode materials suffer from... Aqueous zinc ion batteries(ZIBs) are attracting considerable attentions for practical energy storage because of their low cost and high safety.Nevertheless,the traditional manganese oxide cathode materials suffer from the low intrinsic electronic conductivity,sluggish ions diffusion kinetics,and structural collapse,hindering their large-scale application.Herein,we successfully developed a latent amorphous Mn_(1.8)Fe_(1.2)O_(4) hollow nanocube(a-H-MnFeO) cathode material derived from Prussian blue analogue precursor.The amorphous nature endows the cathode with lower diffusion barrier and narrower band gap compared with crystalline counterpart,resulting in the superior Zn^(2+) ions and electrons transport kinetics.Hollow structure can furnish abundant surface sites and suppress the structural collapse during the repeated charge/discharge processes.By virtue of the multiple advantageous features,the a-H-MnFeO cathode exhibits exceptional electrochemical performance,in terms of high capacity,excellent rate capability,and prolonged cycle life.This strategy will pave the way for the structural design of emerging cathode materials. 展开更多
关键词 Aqueous zinc-ion batteries manganese iron oxide cathode Amorphous structure Hollow nanostructure lons transport kinetics
下载PDF
Lead and Cadmium Adsorption onto Iron Oxides and Manganese Oxides in the Natural Surface Coatings Collected on Natural Substances in the Songhua River of China 被引量:1
2
作者 DONG De-ming ZHAO Xing-min +2 位作者 HUA Xiu-yi ZHANG Jing-jing WU Shi-ming 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第6期659-664,共6页
Natural surface coatings collected from natural substances (NSCsNS) were employed to study the roles of the main chemical components (iron oxides, manganese oxides, and other components) in controlling the adsorpt... Natural surface coatings collected from natural substances (NSCsNS) were employed to study the roles of the main chemical components (iron oxides, manganese oxides, and other components) in controlling the adsorption of lead(Pb) and cadmium(Cd) in aquatic environments. The selective chemical extraction followed by the adsorption of Pb and Cd experiments and statistical analysis, were used to investigate the adsorption property of each component. Hydroxylamine hydrochloride was used to remove manganese oxides selectively, and sodium dithionite was used to extract iron oxides and manganese oxides. The result indicated that iron oxides and manganese oxides played an important role in the adsorption of Pb and Cd on NSCsNS, and the relative contribution was about two-thirds. The contribution of manganese oxides was the greatest, with a lesser role indicated for other components. The adsorption ability of manganese oxides for Pb and Cd was greater than that of iron oxides or other components for Pb and Cd. The Pb adsorption observed in each component was greater than Cd adsorption. 展开更多
关键词 Surface coating iron oxide and manganese oxide EXTRACTION Lead and cadmium adsorption
下载PDF
Investigation on Fe,Mn,Zn,Cu,Pb and Cd fractions in the natural surface coating samples and surficial sediments in the Songhua River,China 被引量:11
3
作者 GUO Shu-hai WANG Xiao-li +2 位作者 LI Yu CHEN Jie-jiang YANG Jun-cheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第6期1193-1198,共6页
Natural surface coating samples (NSCSs) from the surface of shingles and surficial sediments (SSs) in the Songhua River, China were employed to investigate the relationship between NSCSs and SSs in fractions of he... Natural surface coating samples (NSCSs) from the surface of shingles and surficial sediments (SSs) in the Songhua River, China were employed to investigate the relationship between NSCSs and SSs in fractions of heavy metals (Fe, Mn, Zn, Cu, Pb, and Cd) using the modified sequential extraction procedure (MSEP). The results show that the differences between NSCSs and SSs in Fe fi'actions were insignificant and Fe was dominantly present as residual phase (76.22% for NSCSs and 80.88% for SSs) and Fe-oxides phase (20.33% for NSCSs and 16.15% for SSs). Significant variation of Mn distribution patterns between NSCSs and SSs was observed with Mn in NSCSs mainly present in Mn-oxides phase (48.27%) and that in SSs present as residual phase (45.44%). Zn, Cu, Pb and Cd were found dominantly in residual fractions (〉48%), and next in solid oxides/hydroxides for Zn, Pb and Cd and in easily oxidizable solids/compounds form for Cu, respectively. The heavy metal distribution patterns implied that Fe/Mn oxides both in NSCSs and SSs were more important sinks for binding and adsorption of Zn, Pb and Cd than organic matter (OM), and inversely, higher affinity of Cu to OM than Fe/Mn oxides in NSCSs and SSs was obtained. Meanwhile, it was found that the distributions of heavy metals in NSCSs and SSs were similar to each other and the pseudo-total concentrations of Zn, Cu, Pb and Cd in NSCSs were greater than those in SSs, highlighting the more importance for NSCSs than SSs in controlling behaviours of heavy metals in aquatic environments. 展开更多
关键词 natural surface coating samples surficial sediments modified sequential extraction procedure heavy metals iron and manganese oxides organic matter
下载PDF
Syntheses,Structures and Properties of Some New Composition Perovskite Compounds:Sr0.6Bi0.4FeO2.7,Sr1-xBixFeO3-y and Ba1.5Pt0.5Mn2O6
4
《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 1994年第5期350-359,共页
New composition perovskite-type compounds with formula Sr0.6Bi0.4FeO2.7,Sr1-xBixFeO3-y(x=0.1 to 0. 9 in interveral of 0.1),and Ba1.5Pt0.5Mn2O6 have been synthsized and structurally characterized.The crystal structure ... New composition perovskite-type compounds with formula Sr0.6Bi0.4FeO2.7,Sr1-xBixFeO3-y(x=0.1 to 0. 9 in interveral of 0.1),and Ba1.5Pt0.5Mn2O6 have been synthsized and structurally characterized.The crystal structure of Sr0.6Bi0.4FeO2.7has been determined by X-ray single crystal diffraction,and the data of neutron powder diffraction collected at both room temperature and elevated temperature(380℃).The compound Sr0.6Bi0.4FeO2.7 crystallizes in the cubic space group of Pm3m with Z=1,a=3.9330(6) at room temperature,a=3.9498(6)A at 380℃.The magnetic structure from the neutron powder diffraction data collected at room temperature is consistent with a simple G-type antiferromagnetism and has a magnetic moment of 4.98 μB per Fe atom.The structures of Sr1-xBixFeO3-y with x other than 0.4 were also refined from the X-ray powder diffraction data.The data were consistent with a tetragonal cell when x=0.1,a rhombohedral cell when x= 0.9,and a cubic cell for x=0.2~0.8.From single crystal X-ray diffraction data,Ba1.5Pt0.5Mn2O6 crystallizes in hexagonal space group of P63mc with a= 5.7722 (6),c=4.4504(9),V=128.42(2),Z=1.The Sr(1-x)BixFeO(3-y)are found to be a good electronic and ionic conductor. 展开更多
关键词 perovskite-type compounds strontium bismuth iron oxides barium platinum manganese oxide single crystal structure neutron powder diffraction X-ray powder diffraction
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部