The extrartion of aluminum from coal mining waste(CMW) is an important industrial process.The two major problems in applications are low aluminum dissolution efficiency and high iron content in the raw material,which ...The extrartion of aluminum from coal mining waste(CMW) is an important industrial process.The two major problems in applications are low aluminum dissolution efficiency and high iron content in the raw material,which affect the quantity and quality of products.To improve the aluminum recovery process,the leaching kinetics of CMW with hydrochloric acid was studied.A shrinking core model was used to investigate aluminum and iron dissolution kinetics.Based on the kinetic characteristics,a process for recovering aluminum was proposed and tested experimentally.It is found that the aluminum leaching reaction is controlled by surface reaction at low temperatures(40-80℃) and by diffusion process at higher temperatures(90-106℃).The iron dissolution process is dominated by surface reaction at 40-100℃.The results show that iron could be dissolved or separated by concentrated hydrochloric acid.Fine grinding will improve aluminum dissolution significantly.展开更多
The large structure parameter of a sublevel caving method was used in Beiminghe iron mine. The ores were generally lower than the medium hardness and easy to be driUed and blasted. However, the questions of boulder yi...The large structure parameter of a sublevel caving method was used in Beiminghe iron mine. The ores were generally lower than the medium hardness and easy to be driUed and blasted. However, the questions of boulder yield, "pushing-wall" accident rate, and brow damage rate were not effectively controlled in practical blasting. The model test of a similar material shows that the charge concentration of bottom blastholes in the sector is too high; the pushing wall is the fundamental reason for the poor blasting effect. One of the main methods to adjust the explosive distribution is to increase the length of charged blastholes. Therefore, the field tests with respect to increasing the length of uncharged blastholes were made in 12# stope of-95 subsection and 6# stope of Beiminghe iron mine. This paper took the test result of 12# stope as an example to analyze the impact of charge structure on blasting effect and design an appropriate blasting parameter that is to similar to No. 12 stope.展开更多
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien...Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.展开更多
Cooling process of iron ore pellets in a circular cooler has great impacts on the pellet quality and systematic energy exploitation. However, multi-variables and non-visualization of this gray system is unfavorable to...Cooling process of iron ore pellets in a circular cooler has great impacts on the pellet quality and systematic energy exploitation. However, multi-variables and non-visualization of this gray system is unfavorable to efficient production. Thus, the cooling process of iron ore pellets was optimized using mathematical model and data mining techniques. A mathematical model was established and validated by steady-state production data, and the results show that the calculated values coincide very well with the measured values. Based on the proposed model, effects of important process parameters on gas-pellet temperature profiles within the circular cooler were analyzed to better understand the entire cooling process. Two data mining techniques—Association Rules Induction and Clustering were also applied on the steady-state production data to obtain expertise operating rules and optimized targets. Finally, an optimized control strategy for the circular cooler was proposed and an operation guidance system was developed. The system could realize the visualization of thermal process at steady state and provide operation guidance to optimize the circular cooler.展开更多
Riverscape connectivity is a critically important component determining the ecological condition of lotic ecosystems.We evaluated changes in fish assemblages caused by the loss of connectivity by mine tailings storage...Riverscape connectivity is a critically important component determining the ecological condition of lotic ecosystems.We evaluated changes in fish assemblages caused by the loss of connectivity by mine tailings storage dams(TSDs),hypothesizing that headwater fish assemblages are restructured by TSDs located downstream,even though the upstream habitats are not altered.We used standard methods to collect fish in 24 first to third order sites,with half draining to TSDs(dammed)and the other half free from this impact(undammed).To identify differences between treatments,we used PERMANOVA to test both environmental variables and ichthyofauna composition(Bray-Curtis similarity index)and evaluated the biological metrics that most influenced assemblage composition change.As expected,we observed no difference between treatments for environmental variables,but we did observe differences in fish assemblage composition.We also observed five metrics with lower values in dammed streams(richness and abundance of intolerant species,siluriform richness,and abundance of Pareiorhaphis cf.proskynita and Trichomycterus brasiliensis)and two metrics with higher values in dammed streams(perciform richness and abundance of Oligosarcus argenteus).We believe these changes resulted from of stream fragmentation by TSDs,in addition to source-sink mechanisms and conclude that mine TSDs located downstream change headwater fish assemblages,an impact often neglected in biomonitoring and bioassessment studies.展开更多
基金Supported by the National High Technology Research and Development Program of China(2011AA06A103)the National Natural Science Foundation of China(21306109)
文摘The extrartion of aluminum from coal mining waste(CMW) is an important industrial process.The two major problems in applications are low aluminum dissolution efficiency and high iron content in the raw material,which affect the quantity and quality of products.To improve the aluminum recovery process,the leaching kinetics of CMW with hydrochloric acid was studied.A shrinking core model was used to investigate aluminum and iron dissolution kinetics.Based on the kinetic characteristics,a process for recovering aluminum was proposed and tested experimentally.It is found that the aluminum leaching reaction is controlled by surface reaction at low temperatures(40-80℃) and by diffusion process at higher temperatures(90-106℃).The iron dissolution process is dominated by surface reaction at 40-100℃.The results show that iron could be dissolved or separated by concentrated hydrochloric acid.Fine grinding will improve aluminum dissolution significantly.
文摘The large structure parameter of a sublevel caving method was used in Beiminghe iron mine. The ores were generally lower than the medium hardness and easy to be driUed and blasted. However, the questions of boulder yield, "pushing-wall" accident rate, and brow damage rate were not effectively controlled in practical blasting. The model test of a similar material shows that the charge concentration of bottom blastholes in the sector is too high; the pushing wall is the fundamental reason for the poor blasting effect. One of the main methods to adjust the explosive distribution is to increase the length of charged blastholes. Therefore, the field tests with respect to increasing the length of uncharged blastholes were made in 12# stope of-95 subsection and 6# stope of Beiminghe iron mine. This paper took the test result of 12# stope as an example to analyze the impact of charge structure on blasting effect and design an appropriate blasting parameter that is to similar to No. 12 stope.
文摘Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.
基金Item Sponsored by National Natural Science Foundation of China(51174253)
文摘Cooling process of iron ore pellets in a circular cooler has great impacts on the pellet quality and systematic energy exploitation. However, multi-variables and non-visualization of this gray system is unfavorable to efficient production. Thus, the cooling process of iron ore pellets was optimized using mathematical model and data mining techniques. A mathematical model was established and validated by steady-state production data, and the results show that the calculated values coincide very well with the measured values. Based on the proposed model, effects of important process parameters on gas-pellet temperature profiles within the circular cooler were analyzed to better understand the entire cooling process. Two data mining techniques—Association Rules Induction and Clustering were also applied on the steady-state production data to obtain expertise operating rules and optimized targets. Finally, an optimized control strategy for the circular cooler was proposed and an operation guidance system was developed. The system could realize the visualization of thermal process at steady state and provide operation guidance to optimize the circular cooler.
基金supported by a scholarship to GNS from the Coordenacao de Aperfeicoamento de Pessoal de Nível Superior(CAPES)(Code 001)Fundacao de Amparoa Pesquisa do Estado de Minas Gerais(FAPEMIG APQ-00401-19).RMH received a Fulbright-Brasil Distinguished Scholar grantthe National Council for Scientific and Technological Development(CNPq)for research productivity fellowships(RL#312531/2021-4,LFAM#302406/2019-0).
文摘Riverscape connectivity is a critically important component determining the ecological condition of lotic ecosystems.We evaluated changes in fish assemblages caused by the loss of connectivity by mine tailings storage dams(TSDs),hypothesizing that headwater fish assemblages are restructured by TSDs located downstream,even though the upstream habitats are not altered.We used standard methods to collect fish in 24 first to third order sites,with half draining to TSDs(dammed)and the other half free from this impact(undammed).To identify differences between treatments,we used PERMANOVA to test both environmental variables and ichthyofauna composition(Bray-Curtis similarity index)and evaluated the biological metrics that most influenced assemblage composition change.As expected,we observed no difference between treatments for environmental variables,but we did observe differences in fish assemblage composition.We also observed five metrics with lower values in dammed streams(richness and abundance of intolerant species,siluriform richness,and abundance of Pareiorhaphis cf.proskynita and Trichomycterus brasiliensis)and two metrics with higher values in dammed streams(perciform richness and abundance of Oligosarcus argenteus).We believe these changes resulted from of stream fragmentation by TSDs,in addition to source-sink mechanisms and conclude that mine TSDs located downstream change headwater fish assemblages,an impact often neglected in biomonitoring and bioassessment studies.