Mass loss and direct reduction characteristics of iron ore-coal composite pellets under different technological parameters were investigated. Meanwhile, changes of iron phase at different temperatures were analyzed by...Mass loss and direct reduction characteristics of iron ore-coal composite pellets under different technological parameters were investigated. Meanwhile, changes of iron phase at different temperatures were analyzed by using X-ray diffraction (XRD), and characteristics of crushed products were studied by using a scanning electron microscope (SEM). The results showed that heating rate had little influence on the reduction, but the temperature played an important role in the reduction process. The mass loss rate increased rapidly from 800 to 1 100 ℃. The reduction process can be divided into three steps which correspond to different temperature ranges. Fe2 03 began to transform into Fe304 below 500 ℃, and FeO was reduced into Fe from 900 ℃. At 900 ℃, the reduction product showed a clear porous structure, which promoted the reduction progress. At 1000 ℃, the metallic Fe dominated the sample, and the reduction reached a very high degree.展开更多
Although the total amount of boron resources in China is high, the grades of these resources are low. The authors have already proposed a new comprehensive utilization process of boron-bearing iron concentrate based o...Although the total amount of boron resources in China is high, the grades of these resources are low. The authors have already proposed a new comprehensive utilization process of boron-bearing iron concentrate based on the iron nugget process. The present work describes a further optimization of the conditions used in the previous study. The effects of CaO on the reduction-melting behavior and properties of the boron-rich slag are presented. CaO improved the reduction of boron-bearing iron concentrate/carbon composite pellets when its content was less than lwt%. Melting separation of the composite pellets became difficult with the CaO content increased. The sulfur content of the iron nugget gradually decreased from 0.16wt% to 0.046wt% as the CaO content of the pellets increased from 1wt% to 5wt%. CaO negatively affected the iron yield and boron extraction efficiency of the boron-rich slag. The mineral phase evolution of the boron-rich slag during the reduction-melting separation of the composite pellets with added CaO was also deduced.展开更多
Based on the laboratory experiment of reducing iron ore-coal pellet in oxidizing atmosphere,a new self-heating reduction method of iron ore-coal pellet in the cocurrent shaft furnace(CSF) has been developed.In this pr...Based on the laboratory experiment of reducing iron ore-coal pellet in oxidizing atmosphere,a new self-heating reduction method of iron ore-coal pellet in the cocurrent shaft furnace(CSF) has been developed.In this process,the pellets and preheated oxygen-enriched air enter the shaft furnace through its top and descend cocurrently in the furnace.Most of the heat required for rising temperature and endothermic reduction of descending pellets is provided by the way that the descending air burns the volatile from pellets and CO from the reduction of iron oxide in pellets.The reduced pellets and high temperature gas are discharged from the lower part.The sensible heat and chemical energy of the off-gas are used to heat the oxygen-enriched air in stove.This process is applicable to the direct reduction of iron pellets and prereduction of iron pellets in smelting reduction with iron bath.展开更多
The rotary hearth furnace iron nugget process has advantages of short reaction time, high-quality reduced product and wide adaptability of raw materials and meets the trend in ecofriendly development of iron and steel...The rotary hearth furnace iron nugget process has advantages of short reaction time, high-quality reduced product and wide adaptability of raw materials and meets the trend in ecofriendly development of iron and steel industry. Although the rotary hearth furnace iron nugget process cannot replace blast furnace process, which is affected by production scale, thermal efficiency and technical maturity, it is still a feasible technology for iron production. In order to realize the efficient utilization of high Al2O3 iron ore resources, preparation of iron nuggets with high Al2O3 iron ore was studied. Using iron concentrate as raw material, the effects of slag basicity, Al2O3 and MgO on melting separation of iron ore–coal composite pellets, such as the melting separation temperature, the melting separation time, the morphology of melting separated product, and the recovery rate of iron nugget, were studied. The results showed that relatively low or high liquidus temperature of slag had a negative effect on reduction and melting separation of iron ore–coal composite pellets. The increase in fluidity index of slag resulted in a decline in the melting separation temperature and time of iron ore–coal composite pellets. Optimum basicity to produce iron nuggets using iron ore–coal composite pellets was 0.8–1.0, 0.4 and 0.8 for iron concentrate containing 2, 4 and 6–10 wt.% Al2O3, respectively. Corresponding liquidus temperature and fluidity index of slag were 1300–1475 C and above 4.5, respectively. Under this condition, the lowest melting separation temperature and the shortest melting separation time of iron ore–coal composite pellets were 1375 C and 7 min, respectively. The recovery rate of metallic iron in the form of iron nugget could reach about 94%.展开更多
Realizing the boron and iron separation through selective reduction and melting separation of boron-bearing iron con- centrate is of great significance for the utilization of crude ludwigite. The reduction and melting...Realizing the boron and iron separation through selective reduction and melting separation of boron-bearing iron con- centrate is of great significance for the utilization of crude ludwigite. The reduction and melting separation mechanism of boron-bearing iron concentrate/coal composite pellet was systematically investigated. The reduction and melting separation test of small size pellet was performed to reveal the evolution of slag and iron in the melting separation process. The isothermal reduction experiment showed the relationship between reduction stage and melting separation stage, and the step reduction and melting separation was perfectly achieved. Coal particles existed through the reduction and melting separation process and finally formed brown residue around the separated product. The pellet could not realize melting separation when the B2O3 content in the concentrate was lower than 6.00 wt%.展开更多
The influence of gangue compositions (mainly composed of SiO2,CaO,MgO and Al2O3)on the reduction kinetics of carbon-bearing iron ore pellets was estimated at 1373-1473 K in N2 atmosphere.The results showed that gangue...The influence of gangue compositions (mainly composed of SiO2,CaO,MgO and Al2O3)on the reduction kinetics of carbon-bearing iron ore pellets was estimated at 1373-1473 K in N2 atmosphere.The results showed that gangue content and each component distribution affected the pellets reduction process.The reduction rate was found to follow a linear correlation with quaternary basicity R4 [mass ratio of (CaO +MgO)to (SIO2 +Al2O3)]of the carbon-beating iron ore pellets;also,the content of SiO2 solid solution in iron oxide had a significant impact on the reduction rate.At the same reduction temperature,a higher R4 resulted in a lower SiO2 free content,weakening its inhibitory effect on the Boudouard reaction.The reduction temperature of Fe2SiO4 could be reduced by increasing the contents of CaO and MgO,improving the iron oxide reduction as well as the precipitation and growth of the iron grains.The g'angue content and .component distribution showed no effect on the rate-controlling step of the reduction;however,the apparent activation energy of reaction decreased with increasing quaternary basicity.When R4 increased from 0.15 to 0.67,the apparent activation energy decreased from 228.51 to 193.66 kJ/mol.展开更多
Effect of distribution of iron concentrates between pelletized and matrix feed on the preparation of blast furnace burdens from two different kinds of fine iron concentrates (magnetite and hematite) by composite agglo...Effect of distribution of iron concentrates between pelletized and matrix feed on the preparation of blast furnace burdens from two different kinds of fine iron concentrates (magnetite and hematite) by composite agglomeration process (CAP) was explored. It was found that when the mass ratio of iron concentrate A (magnetite) to iron concentrate B (hematite) in the mixed feed was constant, the proportion of iron concentrate A in the pelletized and matrix feed significantly affected the quality of CAP products. Particularly, as the proportion of iron concentrate A in the pelletized feed increased from 0 to 100%, the yield decreased from 82.11% to 79.19% and the tumbler index decreased from 71.33% to 68.27%. The mineralization characterization results indicated that when 100% iron concentrate A was used as the pelletized feed, the crystallization styles of the outer layer and the inner layer of the pellet were different, and a lot of pores exist around hematite and magnetite phases in the pelletized part, with the weak connection of pelletized and matrix part, resulting in poor strength of agglomeration product.展开更多
基金Sponsored by Fundamental Research Funds for the Central Universities of China(FRF-SD-12-007B)National Science and Technology Support Plan in the 12th Five-year of China(2011BAE13B09)
文摘Mass loss and direct reduction characteristics of iron ore-coal composite pellets under different technological parameters were investigated. Meanwhile, changes of iron phase at different temperatures were analyzed by using X-ray diffraction (XRD), and characteristics of crushed products were studied by using a scanning electron microscope (SEM). The results showed that heating rate had little influence on the reduction, but the temperature played an important role in the reduction process. The mass loss rate increased rapidly from 800 to 1 100 ℃. The reduction process can be divided into three steps which correspond to different temperature ranges. Fe2 03 began to transform into Fe304 below 500 ℃, and FeO was reduced into Fe from 900 ℃. At 900 ℃, the reduction product showed a clear porous structure, which promoted the reduction progress. At 1000 ℃, the metallic Fe dominated the sample, and the reduction reached a very high degree.
基金the financial support of the National Natural Science Foundation of China (Grant Nos. 51274033 and 51374024)
文摘Although the total amount of boron resources in China is high, the grades of these resources are low. The authors have already proposed a new comprehensive utilization process of boron-bearing iron concentrate based on the iron nugget process. The present work describes a further optimization of the conditions used in the previous study. The effects of CaO on the reduction-melting behavior and properties of the boron-rich slag are presented. CaO improved the reduction of boron-bearing iron concentrate/carbon composite pellets when its content was less than lwt%. Melting separation of the composite pellets became difficult with the CaO content increased. The sulfur content of the iron nugget gradually decreased from 0.16wt% to 0.046wt% as the CaO content of the pellets increased from 1wt% to 5wt%. CaO negatively affected the iron yield and boron extraction efficiency of the boron-rich slag. The mineral phase evolution of the boron-rich slag during the reduction-melting separation of the composite pellets with added CaO was also deduced.
基金Project supported by the National Foundation of Nature Science of China
文摘Based on the laboratory experiment of reducing iron ore-coal pellet in oxidizing atmosphere,a new self-heating reduction method of iron ore-coal pellet in the cocurrent shaft furnace(CSF) has been developed.In this process,the pellets and preheated oxygen-enriched air enter the shaft furnace through its top and descend cocurrently in the furnace.Most of the heat required for rising temperature and endothermic reduction of descending pellets is provided by the way that the descending air burns the volatile from pellets and CO from the reduction of iron oxide in pellets.The reduced pellets and high temperature gas are discharged from the lower part.The sensible heat and chemical energy of the off-gas are used to heat the oxygen-enriched air in stove.This process is applicable to the direct reduction of iron pellets and prereduction of iron pellets in smelting reduction with iron bath.
基金The authors would like to express their gratitude for the financial support of Fundamental Research Funds for the Central Universities (FRF-TP-18-008A2)the National Natural Science Foundation of China (51804024)+1 种基金the China Postdoctoral Science Foundation (2016M600919)the State Key Laboratory of Advanced Metallurgy of University of Science and Technology Beijing (41618022).
文摘The rotary hearth furnace iron nugget process has advantages of short reaction time, high-quality reduced product and wide adaptability of raw materials and meets the trend in ecofriendly development of iron and steel industry. Although the rotary hearth furnace iron nugget process cannot replace blast furnace process, which is affected by production scale, thermal efficiency and technical maturity, it is still a feasible technology for iron production. In order to realize the efficient utilization of high Al2O3 iron ore resources, preparation of iron nuggets with high Al2O3 iron ore was studied. Using iron concentrate as raw material, the effects of slag basicity, Al2O3 and MgO on melting separation of iron ore–coal composite pellets, such as the melting separation temperature, the melting separation time, the morphology of melting separated product, and the recovery rate of iron nugget, were studied. The results showed that relatively low or high liquidus temperature of slag had a negative effect on reduction and melting separation of iron ore–coal composite pellets. The increase in fluidity index of slag resulted in a decline in the melting separation temperature and time of iron ore–coal composite pellets. Optimum basicity to produce iron nuggets using iron ore–coal composite pellets was 0.8–1.0, 0.4 and 0.8 for iron concentrate containing 2, 4 and 6–10 wt.% Al2O3, respectively. Corresponding liquidus temperature and fluidity index of slag were 1300–1475 C and above 4.5, respectively. Under this condition, the lowest melting separation temperature and the shortest melting separation time of iron ore–coal composite pellets were 1375 C and 7 min, respectively. The recovery rate of metallic iron in the form of iron nugget could reach about 94%.
基金The authors would like to express their gratitude for the financial support of the China Postdoctoral Science Foundation (No. 2016M600919) and National Natural Science Foundation of China (No. 51274033).
文摘Realizing the boron and iron separation through selective reduction and melting separation of boron-bearing iron con- centrate is of great significance for the utilization of crude ludwigite. The reduction and melting separation mechanism of boron-bearing iron concentrate/coal composite pellet was systematically investigated. The reduction and melting separation test of small size pellet was performed to reveal the evolution of slag and iron in the melting separation process. The isothermal reduction experiment showed the relationship between reduction stage and melting separation stage, and the step reduction and melting separation was perfectly achieved. Coal particles existed through the reduction and melting separation process and finally formed brown residue around the separated product. The pellet could not realize melting separation when the B2O3 content in the concentrate was lower than 6.00 wt%.
基金National Natural Science Foundation of China (Grant Nos.51574002 and 51404005)Natural Sciences and Engineering Research Council of Canada (NSERC)and Science without borders/CNPq (L.Dessbesell).
文摘The influence of gangue compositions (mainly composed of SiO2,CaO,MgO and Al2O3)on the reduction kinetics of carbon-bearing iron ore pellets was estimated at 1373-1473 K in N2 atmosphere.The results showed that gangue content and each component distribution affected the pellets reduction process.The reduction rate was found to follow a linear correlation with quaternary basicity R4 [mass ratio of (CaO +MgO)to (SIO2 +Al2O3)]of the carbon-beating iron ore pellets;also,the content of SiO2 solid solution in iron oxide had a significant impact on the reduction rate.At the same reduction temperature,a higher R4 resulted in a lower SiO2 free content,weakening its inhibitory effect on the Boudouard reaction.The reduction temperature of Fe2SiO4 could be reduced by increasing the contents of CaO and MgO,improving the iron oxide reduction as well as the precipitation and growth of the iron grains.The g'angue content and .component distribution showed no effect on the rate-controlling step of the reduction;however,the apparent activation energy of reaction decreased with increasing quaternary basicity.When R4 increased from 0.15 to 0.67,the apparent activation energy decreased from 228.51 to 193.66 kJ/mol.
基金supported by the National Natural Science Foundation of China under Grant U1960114,51774337,and U1660206the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University under Grant CSUZC201905the Fundamental Research Funds for the Central Universities of Central South University under Grant 2018zzts220.
文摘Effect of distribution of iron concentrates between pelletized and matrix feed on the preparation of blast furnace burdens from two different kinds of fine iron concentrates (magnetite and hematite) by composite agglomeration process (CAP) was explored. It was found that when the mass ratio of iron concentrate A (magnetite) to iron concentrate B (hematite) in the mixed feed was constant, the proportion of iron concentrate A in the pelletized and matrix feed significantly affected the quality of CAP products. Particularly, as the proportion of iron concentrate A in the pelletized feed increased from 0 to 100%, the yield decreased from 82.11% to 79.19% and the tumbler index decreased from 71.33% to 68.27%. The mineralization characterization results indicated that when 100% iron concentrate A was used as the pelletized feed, the crystallization styles of the outer layer and the inner layer of the pellet were different, and a lot of pores exist around hematite and magnetite phases in the pelletized part, with the weak connection of pelletized and matrix part, resulting in poor strength of agglomeration product.