The surface oxidation patterns of iron or low-carbon steels are critical to their life when serving in typical damp environments. An accurate determination of the oxidation pattern entails tracking the iron atoms oxid...The surface oxidation patterns of iron or low-carbon steels are critical to their life when serving in typical damp environments. An accurate determination of the oxidation pattern entails tracking the iron atoms oxidized at the iron/steel-moisture interface. Using a quantum chemistry-based force field that is capable of simulating chemical reactions, this paper studies the process of iron oxidation under a typical moist condition. The oxidation of iron surface was found to be highly thermodynamic and dependent on the availability of reactants. A triplex structure was formed at the end of a three-stage oxidation process to reduce the overall oxidation speed. The results from this study shed light on the atomistic mechanism of iron oxidation; therefore can be used to guide the protection of general ferrous-based iron/steel structures.展开更多
Iron oxide supported Au nanomaterials are one of the most studied catalysts for low-temperature CO oxidation.Catalytic performance not only critically depends on the size of the supported Au nanoparticles(NPs)but also...Iron oxide supported Au nanomaterials are one of the most studied catalysts for low-temperature CO oxidation.Catalytic performance not only critically depends on the size of the supported Au nanoparticles(NPs)but also strongly on the chemical nature of the iron oxide.In this study,Au NPs supported on iron oxide nanorods with different surface properties throughβ-FeOOH annealing,at varying temperatures,were synthesized,and applied in the CO oxidation.Detailed characterizations of the interactions between Au NPs and iron oxides were obtained by X-ray diffraction,transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy.The results indicate that the surface hydroxyl group on the Au/FeOOH catalyst,before calcination(Au/FeOOH-fresh),could facilitate the oxygen adsorption and dissociation on positively charged Au,thereby contributing to the low-temperature CO oxidation reactivity.After calcination at 200℃,under air exposure,the chemical state of the supported Au NP on varied iron oxides partly changed from metal cation to Au0,along with the disappearance of the surface OH species.Au/FeOOH with the highest Au0 content exhibits the highest activity in CO oxidation,among the as-synthesized catalysts.Furthermore,good durability in CO oxidation was achieved over the Au/FeOOH catalyst for 12 h without observable deactivation.In addition,the advanced identical-location TEM method was applied to the gas phase reaction to probe the structure evolution of the Au/iron oxide series of the catalysts and support structure.A Au NP size-dependent Ostwald ripening process mediated by the transport of Au(CO)x mobile species under certain reaction conditions is proposed,which offers a new insight into the validity of the structure-performance relationship.展开更多
Developing efficient water oxidation catalysts(WOCs)with earth‐abundant elements still remains a challenging task for artificial photosynthesis.Iron‐based WOC is a promising candidate because it is economically chea...Developing efficient water oxidation catalysts(WOCs)with earth‐abundant elements still remains a challenging task for artificial photosynthesis.Iron‐based WOC is a promising candidate because it is economically cheap,little toxic and environmentally friendly.In this study,we found that the catalytic water oxidation activity on amorphous iron‐based oxide/hydroxide(FeOx)can be decreased by an order of magnitude after the dehydration process at room temperature.Thermogravimetric analysis,XRD and Raman results indicated that the dehydration process of FeOx at room temperature causes the almost completely loss of water molecule with no bulk structural changes.Based on this finding,we prepared hydrated ultrasmall(ca.2.2 nm)FeOx nanoparticles of amorphous feature,which turns out to be extremely active as WOC with turnover frequency(TOF)up to 9.3 s^-1 in the photocatalytic Ru(bpy)3^2+‐Na2S2O8 system.Our findings suggest that future design of active iron‐based oxides as WOCs requires the consideration of their hydration status.展开更多
The cerium iron complex oxides oxygen carrier was prepared by the co-precipitation method. The reactions between methane and lattice oxygen from the complex oxides were investigated in a fixed micro-reactor system. Th...The cerium iron complex oxides oxygen carrier was prepared by the co-precipitation method. The reactions between methane and lattice oxygen from the complex oxides were investigated in a fixed micro-reactor system. The reduced oxygen carder could be re-oxidized by air and its initial state could be restored. The characterizations of the oxygen carders were studied using XRD, O2-TPD, and H2-TPR. The results showed that the bulk lattice oxygen of CeO2-Fe2O3 was found to be suitable for the partial oxidation of methane to synthesis gas. There were two kinds of oxygen species on the oxygen carrier: the stronger oxygen species that was responsible for the complete oxidation of methane, and the weaker oxygen species (bulk lattice oxygen) that was responsible for the selective oxidation of methane to CO and H2 at a higher temperature. Then, the lost bulk lattice oxygen could be selectively supplemented by air re-oxidation at an appropriate reaction condition. CeFeO3 appeared on the oxygen carrier after 10 successive redox cycles, however, it was not bad for the selectivity of CO and H2.展开更多
Nanostructured iron oxyhydroxide(Fe OOH) thin films have been synthesized using an electrodeposition method on a nickel foam(NF) substrate and effect of air annealing temperature on the catalytic performance is st...Nanostructured iron oxyhydroxide(Fe OOH) thin films have been synthesized using an electrodeposition method on a nickel foam(NF) substrate and effect of air annealing temperature on the catalytic performance is studied. The as-deposited and annealed thin films were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS), field emission scanning electron microscopy(FE-SEM) and linear sweep voltammetry(LSV) to determine their structural, morphological, compositional and electrochemical properties, respectively. The as-deposited nanostructured amorphous Fe OOH thin film is converted into a polycrystalline Fe;O;with hematite crystal structure at a high temperature. The Fe OOH thin film acts as an efficient electrocatalyst for the oxygen evolution reaction(OER) in an alkaline 1 M KOH electrolyte. The film annealed at 200 °C shows high catalytic activity with an onset overpotential of 240 m V with a smaller Tafel slope of 48 m V/dec. Additionally, it needs an overpotential of 290 mV to the drive the current density of 10 m A/cm;and shows good stability in the 1 M KOH electrolyte solution.展开更多
Iron oxide nanoparticles(FeOx NPs, 5–30 nm size) prepared via laser ablation in liquid were supported onto Indium Tin Oxide conductive glass slides by magnetophoretic deposition(MD) technique. The resulting Fe O ...Iron oxide nanoparticles(FeOx NPs, 5–30 nm size) prepared via laser ablation in liquid were supported onto Indium Tin Oxide conductive glass slides by magnetophoretic deposition(MD) technique. The resulting Fe O x@ITO electrodes are characterized by a low amount of iron coverage of 16–50 nmol/cm^2,and show electrocatalytic activity towards water oxidation in neutral phosphate buffer pH 7 with 0.58 V overpotential and quantitative Faradaic efficiency towards oxygen production. XPS analysis on the oxygen region of the FeOx films reveals a substantial hydration of the surface after catalysis, recognized as a crucial step to access reactivity.展开更多
Oxidation of alkybenzenes PhCH_2R(R=H, CH_3, C_2H_5 and n-C_3H_7) under 1 atm. of O_2 or air catalyzed by iron(Ⅱ, Ⅲ)-2,2'-bipyridine and 1,10-phenanthroline complexes, affords the aryl-substituted ketones and al...Oxidation of alkybenzenes PhCH_2R(R=H, CH_3, C_2H_5 and n-C_3H_7) under 1 atm. of O_2 or air catalyzed by iron(Ⅱ, Ⅲ)-2,2'-bipyridine and 1,10-phenanthroline complexes, affords the aryl-substituted ketones and alcohols with the conversion of 15.00%~34.58% containing of 97.60%~99.80% ketones and alcohols. The turnover numbers of these catalysts are over 3500 mol-cat. ^(-1)for 3.5 h.展开更多
In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photosta...In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photostability by incorporating magnetic zinc oxide/graphene/iron oxide (ZGF). A solvothermal approach was used to synthesize the catalyst. X-ray diffraction (XRD), scanning electron microscopic, energy dispersive X-ray, transmission electron microscopic, vibrating sample magnetometric, and ultraviolet–visible diffuse reflectance spectroscopic techniques were used to characterize the synthesized samples. The obtained optimal Zn(NO_(3))_(2) concentration, temperature, and heating duration were 0.10 mol/L, 600℃, and 1 h, respectively. The XRD pattern revealed the presence of peaks corresponding to zinc oxide, graphene, and iron oxide, indicating that the ZGF catalyst was effectively synthesized. Furthermore, when the developed ZGF was used for methylene blue dye degradation, the optimum irradiation time, dye concentration, catalyst dosage, irradiation intensity, and solution pH were 90 min, 10 mg/L, 0.03 g/L, 100 W, and 8.0, respectively. Therefore, the synthesized ZGF system could be used as a catalyst to degrade dyes in wastewater samples. This hybrid nanocomposite consisting of zinc oxide, graphene, and iron oxide could also be used as an effective photocatalytic degrader for various dye pollutants.展开更多
Aqueous zinc ion batteries(ZIBs) are attracting considerable attentions for practical energy storage because of their low cost and high safety.Nevertheless,the traditional manganese oxide cathode materials suffer from...Aqueous zinc ion batteries(ZIBs) are attracting considerable attentions for practical energy storage because of their low cost and high safety.Nevertheless,the traditional manganese oxide cathode materials suffer from the low intrinsic electronic conductivity,sluggish ions diffusion kinetics,and structural collapse,hindering their large-scale application.Herein,we successfully developed a latent amorphous Mn_(1.8)Fe_(1.2)O_(4) hollow nanocube(a-H-MnFeO) cathode material derived from Prussian blue analogue precursor.The amorphous nature endows the cathode with lower diffusion barrier and narrower band gap compared with crystalline counterpart,resulting in the superior Zn^(2+) ions and electrons transport kinetics.Hollow structure can furnish abundant surface sites and suppress the structural collapse during the repeated charge/discharge processes.By virtue of the multiple advantageous features,the a-H-MnFeO cathode exhibits exceptional electrochemical performance,in terms of high capacity,excellent rate capability,and prolonged cycle life.This strategy will pave the way for the structural design of emerging cathode materials.展开更多
Superparamagnetic iron oxide nanoparticles(SPIONs)have immeasurable potentials in many fields such as nanobiotechnology and biomedical engineering because of their superparamagnetic properties and small particle size....Superparamagnetic iron oxide nanoparticles(SPIONs)have immeasurable potentials in many fields such as nanobiotechnology and biomedical engineering because of their superparamagnetic properties and small particle size.This review introduces the methods for SPIONs synthesis,including co-precipitation,thermal decomposition,microemulsion and hydrothermal reaction,and surface modification of SPIONs with organometallic and inorganic metals,surface modification for targeted drug delivery,and the use of SPIONs as a contrast agent.In addition,this article also provides an overview of recent progress in SPIONs for the treatment of glioma,lung cancer and breast cancer.展开更多
The preparation of γ-Fe<sub>2</sub>O<sub>3</sub>/Gd<sub>2</sub>O<sub>3</sub> nanocomposite for possible use in magnetic hyperthermia application was done by ball millin...The preparation of γ-Fe<sub>2</sub>O<sub>3</sub>/Gd<sub>2</sub>O<sub>3</sub> nanocomposite for possible use in magnetic hyperthermia application was done by ball milling technique. The nanocomposite was characterized by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The heating efficiency and the effect of milling time (5 h and 30 h) on the structural and magnetic properties of the nanocomposite were reported. XRD analysis confirms the formation of the nanocomposite, while magnetization measurements show that the milled sample present hysteresis with low coercivity and remanence. The specific absorption rate (SAR) under an alternating magnetic field is investigated as a function of the milling time. A mean heating efficiency of 68 W/g and 28.7 W/g are obtained for 5 h and 30 h milling times respectively at 332 kHz and 170 Oe. The results showed that the obtained nanocomposite for 5 h milling time is a promising candidate for magnetic hyperthermia due to his properties which show an interesting magnetic behavior and high specific absorption rate.展开更多
Objective: Application of magnetic nanoparticles as gene carrier in gene therapy has developed quickly. This study was designed to investigate the preparation of superparamagnetic dextran-coated iron oxide nanoparticl...Objective: Application of magnetic nanoparticles as gene carrier in gene therapy has developed quickly. This study was designed to investigate the preparation of superparamagnetic dextran-coated iron oxide nanoparticles (SDION) and the feasibility of SDION used as a novel gene carrier for plasmid DNA in vitro. Methods: SDION were prepared by chemical coprecipitation and separated by gel filtration on Sephacryl S-300HR, characterized by TEM, laser scattering system and Vibrating Sample Magnetometer Signal Processor. The green fluorescent protein (pGFP-C2) plasmid DNA was used as target gene. SDION-pGFP-C2 conjugate compounds were produced by means of oxidoreduction reaction. The connection ratio of SDION and pGFP-C2 DNA was analyzed and evaluated by agarose electrophoresis and the concentration of pGFP-C2 in supernatant was measured. Using liposome as control, the transfection efficiency of SDION and liposome was respectively evaluated under fluorescence microscope in vitro. Results: The diameter of SDION ranges from 3 nm to 8 nm, the effective diameter was 59.2 nm and the saturation magnetization was 0.23 emu/g. After SDION were reasonably oxidized, SDION could connect with pGFP-C2 to a high degree. The transfection efficiency of SDION as gene carrier was higher than that of liposome. Conclusion: The successes in connecting SDION with pGFP-C2 plasmid by means of oxidoreduction reaction and in transferring pGFP-C2 gene into human bladder cancer BIU-87 cells in vitro provided the experimental evidence for the feasibility of SDION used as a novel gene carrier.展开更多
The study focused on the effect of several typical competing solutes on removal of arsenic with Fe2O3 and Al2O3. The test results indicate that chloride, nitrate and sulfate did not have detectable effects, and that s...The study focused on the effect of several typical competing solutes on removal of arsenic with Fe2O3 and Al2O3. The test results indicate that chloride, nitrate and sulfate did not have detectable effects, and that selenium(Ⅳ) (Se(Ⅳ)) and vanadium(Ⅴ) (V(Ⅴ)) showed slight effects on the adsorption of As(Ⅴ) with Fe2O3. The results also showed that adsorption of As(Ⅴ) on A12O3 was not affected by chloride and nitrate anions, but slightly by Se(Ⅳ) and V(Ⅴ) ions. Unlike the adsorption of As(Ⅴ) with Fe2O3, that with Fe2O3 was affected by the presence of sulfate in water solutions. Both phosphate and silica have significant adverse effects on the adsorption of As(Ⅴ) adsorption with Fe2O3 and Al2O3. Compared to the other tested anions, phosphate anion was found to be the most prominent solute affecting the As(Ⅴ) adsorption with Fe2O3 and Al2O3. In general, Fe2O3 has a better performance than Al2O3 in removal of As(Ⅴ) within a water environment where multi competing solutes are present.展开更多
Kinetics parameters of iron oxide reduction by hydrogen were evaluated by the isothermal method in a differential micro-packed bed. Influence of external diffusion, internal diffusion and heat transfer on the intrinsi...Kinetics parameters of iron oxide reduction by hydrogen were evaluated by the isothermal method in a differential micro-packed bed. Influence of external diffusion, internal diffusion and heat transfer on the intrinsic reaction rate was investigated and the conditions free of internal and external diffusion resistance have been determined. In the experiments, in order to correctly evaluate the intrinsic kinetics parameters for reducing Fe203 to Fe3O4, the reaction temperatures were set between 440 ℃ and 490 ℃. However, in order to distinguish the reduction of Fe304 to FeO from that of FeO to Fe, the reaction temperature in the experiment was set to be greater than 570 ℃. Intrinsic kinetics of iron oxide reduction by hydrogen was established and the newly established kinetic models were validated by the experimental data.展开更多
Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program redu...Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2-CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.展开更多
Electromagnetic(EM) wave absorbing cement-based composite has promising applications in protecting civil and military buildings from electromagnetic interferences. A new idea of preparing EM wave absorbing cement-ba...Electromagnetic(EM) wave absorbing cement-based composite has promising applications in protecting civil and military buildings from electromagnetic interferences. A new idea of preparing EM wave absorbing cement-based composite is proposed by using ceramsite containing iron oxide as EM wave absorbing functional aggregate. The ceramsite was synthesized by adding 10 wt% Fe3O4 into clay and sintering at 1 200 ℃, which shows obvious dielectric and magnetic loss properties for electromagnetic wave. The maximum reflection loss(RL) of the concrete specimens prepared with the ceramsite is between-10.2--10.7 dB(corresponding to absorption greater than 90% EM energy) in the bandwidth of 8-18 GHz. In addition, the compressive strength at 28 days age of the concrete is 46 MPa, showing the potentiality of being used as structural components in buildings.展开更多
Reducing the chloride content in regenerated iron oxides (RIO) from steel-pickling acid waste economically treated by Ruthner process is the most critical issue for the development of RIO as a useful raw material reso...Reducing the chloride content in regenerated iron oxides (RIO) from steel-pickling acid waste economically treated by Ruthner process is the most critical issue for the development of RIO as a useful raw material resource. In this paper, the results of a new method for characterization and modification of RIO produced in Mobarakeh Steel Complex were reported.展开更多
The effect of calcium oxide additive in iron oxide sorbent for hot gas desulfurization was investigated by XRD and TPR techniques.XRD characterization showed that CaO was highly dispersed after the calcination of sorb...The effect of calcium oxide additive in iron oxide sorbent for hot gas desulfurization was investigated by XRD and TPR techniques.XRD characterization showed that CaO was highly dispersed after the calcination of sorbents.Calcium sulfate formed in the desulfurization was decomposed and regenerated to CaO by reacting with CO before the next sulfidation process.Calcium participated in every sulfidation/regeneration cycle and contributed to the enhancement of sulfur capacity.The TPR results showed that the reduction temperature of the sorbent increased with the increase of the content of calcium.Calcium played a role of retarding reduction.Therefore,the addition of calcium oxide additive will benefit the utilization of iron oxide sorbent in strongly reducing atmospheres.展开更多
Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for...Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for online control.Establishment of kiln process control expert system was presented,with maximum temperature of pellet and gas temperature at the feed end as control cores,and interval estimate as control strategy.Software was developed and put into application in a pellet plant.The results show that control guidance of this system is accurate and effective.After production application for nearly one year,the compressive strength and first grade rate of pellet are increased by 86 N and 2.54%,respectively,while FeO content is 0.05% lowered.This system can reveal detailed information of real time kiln process,and provide a powerful tool for online control of pellet production.展开更多
文摘The surface oxidation patterns of iron or low-carbon steels are critical to their life when serving in typical damp environments. An accurate determination of the oxidation pattern entails tracking the iron atoms oxidized at the iron/steel-moisture interface. Using a quantum chemistry-based force field that is capable of simulating chemical reactions, this paper studies the process of iron oxidation under a typical moist condition. The oxidation of iron surface was found to be highly thermodynamic and dependent on the availability of reactants. A triplex structure was formed at the end of a three-stage oxidation process to reduce the overall oxidation speed. The results from this study shed light on the atomistic mechanism of iron oxidation; therefore can be used to guide the protection of general ferrous-based iron/steel structures.
基金supported by the National Natural Science Foundation of China(21773269,21761132025,91545119,21703262)the Youth Innovation Promotion Association CAS(2015152)+1 种基金the Joint Foundation of Liaoning Province Natural Science FoundationShenyang National Laboratory for Materials Science(20180510047)~~
文摘Iron oxide supported Au nanomaterials are one of the most studied catalysts for low-temperature CO oxidation.Catalytic performance not only critically depends on the size of the supported Au nanoparticles(NPs)but also strongly on the chemical nature of the iron oxide.In this study,Au NPs supported on iron oxide nanorods with different surface properties throughβ-FeOOH annealing,at varying temperatures,were synthesized,and applied in the CO oxidation.Detailed characterizations of the interactions between Au NPs and iron oxides were obtained by X-ray diffraction,transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy.The results indicate that the surface hydroxyl group on the Au/FeOOH catalyst,before calcination(Au/FeOOH-fresh),could facilitate the oxygen adsorption and dissociation on positively charged Au,thereby contributing to the low-temperature CO oxidation reactivity.After calcination at 200℃,under air exposure,the chemical state of the supported Au NP on varied iron oxides partly changed from metal cation to Au0,along with the disappearance of the surface OH species.Au/FeOOH with the highest Au0 content exhibits the highest activity in CO oxidation,among the as-synthesized catalysts.Furthermore,good durability in CO oxidation was achieved over the Au/FeOOH catalyst for 12 h without observable deactivation.In addition,the advanced identical-location TEM method was applied to the gas phase reaction to probe the structure evolution of the Au/iron oxide series of the catalysts and support structure.A Au NP size-dependent Ostwald ripening process mediated by the transport of Au(CO)x mobile species under certain reaction conditions is proposed,which offers a new insight into the validity of the structure-performance relationship.
基金supported by the Basic Research Program of China(973 Program,2014CB239403)National Natural Science Foundation of China(21522306,21633009)Key Research Program of Frontier Sciences,CAS(QYZDY-SSW-JSC023)
文摘Developing efficient water oxidation catalysts(WOCs)with earth‐abundant elements still remains a challenging task for artificial photosynthesis.Iron‐based WOC is a promising candidate because it is economically cheap,little toxic and environmentally friendly.In this study,we found that the catalytic water oxidation activity on amorphous iron‐based oxide/hydroxide(FeOx)can be decreased by an order of magnitude after the dehydration process at room temperature.Thermogravimetric analysis,XRD and Raman results indicated that the dehydration process of FeOx at room temperature causes the almost completely loss of water molecule with no bulk structural changes.Based on this finding,we prepared hydrated ultrasmall(ca.2.2 nm)FeOx nanoparticles of amorphous feature,which turns out to be extremely active as WOC with turnover frequency(TOF)up to 9.3 s^-1 in the photocatalytic Ru(bpy)3^2+‐Na2S2O8 system.Our findings suggest that future design of active iron‐based oxides as WOCs requires the consideration of their hydration status.
基金the National Natural Science Foundation of China (50574046)National Natural Science Foundation of Major Research Projects (90610035)+1 种基金Natural Science Foundation of Yunnan Province (2004E0058Q)High School Doctoral Subject Special Science and Research Foundation of Ministry of Education (20040674005)
文摘The cerium iron complex oxides oxygen carrier was prepared by the co-precipitation method. The reactions between methane and lattice oxygen from the complex oxides were investigated in a fixed micro-reactor system. The reduced oxygen carder could be re-oxidized by air and its initial state could be restored. The characterizations of the oxygen carders were studied using XRD, O2-TPD, and H2-TPR. The results showed that the bulk lattice oxygen of CeO2-Fe2O3 was found to be suitable for the partial oxidation of methane to synthesis gas. There were two kinds of oxygen species on the oxygen carrier: the stronger oxygen species that was responsible for the complete oxidation of methane, and the weaker oxygen species (bulk lattice oxygen) that was responsible for the selective oxidation of methane to CO and H2 at a higher temperature. Then, the lost bulk lattice oxygen could be selectively supplemented by air re-oxidation at an appropriate reaction condition. CeFeO3 appeared on the oxygen carrier after 10 successive redox cycles, however, it was not bad for the selectivity of CO and H2.
基金supported by the Human Resources Development program(no.20124010203180) of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)Grant funded by the Korea government Ministry of Trade,Industry and Energysupported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science,ICT and Future Planning(NRF-2015R1A2A2A01006856)
文摘Nanostructured iron oxyhydroxide(Fe OOH) thin films have been synthesized using an electrodeposition method on a nickel foam(NF) substrate and effect of air annealing temperature on the catalytic performance is studied. The as-deposited and annealed thin films were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS), field emission scanning electron microscopy(FE-SEM) and linear sweep voltammetry(LSV) to determine their structural, morphological, compositional and electrochemical properties, respectively. The as-deposited nanostructured amorphous Fe OOH thin film is converted into a polycrystalline Fe;O;with hematite crystal structure at a high temperature. The Fe OOH thin film acts as an efficient electrocatalyst for the oxygen evolution reaction(OER) in an alkaline 1 M KOH electrolyte. The film annealed at 200 °C shows high catalytic activity with an onset overpotential of 240 m V with a smaller Tafel slope of 48 m V/dec. Additionally, it needs an overpotential of 290 mV to the drive the current density of 10 m A/cm;and shows good stability in the 1 M KOH electrolyte solution.
基金supported by the Italian Ministero dell’Università e della Ricerca (MIUR), (FIRB RBAP11C58Y, "Nano Solar" and PRIN 2010 "Hi-Phuture")COST action CM1205 "CARISMA: CAtalytic Rout Ines for Small Molecule Activation"
文摘Iron oxide nanoparticles(FeOx NPs, 5–30 nm size) prepared via laser ablation in liquid were supported onto Indium Tin Oxide conductive glass slides by magnetophoretic deposition(MD) technique. The resulting Fe O x@ITO electrodes are characterized by a low amount of iron coverage of 16–50 nmol/cm^2,and show electrocatalytic activity towards water oxidation in neutral phosphate buffer pH 7 with 0.58 V overpotential and quantitative Faradaic efficiency towards oxygen production. XPS analysis on the oxygen region of the FeOx films reveals a substantial hydration of the surface after catalysis, recognized as a crucial step to access reactivity.
文摘Oxidation of alkybenzenes PhCH_2R(R=H, CH_3, C_2H_5 and n-C_3H_7) under 1 atm. of O_2 or air catalyzed by iron(Ⅱ, Ⅲ)-2,2'-bipyridine and 1,10-phenanthroline complexes, affords the aryl-substituted ketones and alcohols with the conversion of 15.00%~34.58% containing of 97.60%~99.80% ketones and alcohols. The turnover numbers of these catalysts are over 3500 mol-cat. ^(-1)for 3.5 h.
基金supported by the Research and Development Institute at Nakhon Si Thammarat Rajabhat University and the Nanomaterials Chemistry Research Unit at Nakhon Si Thammarat Rajabhat University,Nakhon Si Thammarat,Thailand(Grant No.004/2563).
文摘In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photostability by incorporating magnetic zinc oxide/graphene/iron oxide (ZGF). A solvothermal approach was used to synthesize the catalyst. X-ray diffraction (XRD), scanning electron microscopic, energy dispersive X-ray, transmission electron microscopic, vibrating sample magnetometric, and ultraviolet–visible diffuse reflectance spectroscopic techniques were used to characterize the synthesized samples. The obtained optimal Zn(NO_(3))_(2) concentration, temperature, and heating duration were 0.10 mol/L, 600℃, and 1 h, respectively. The XRD pattern revealed the presence of peaks corresponding to zinc oxide, graphene, and iron oxide, indicating that the ZGF catalyst was effectively synthesized. Furthermore, when the developed ZGF was used for methylene blue dye degradation, the optimum irradiation time, dye concentration, catalyst dosage, irradiation intensity, and solution pH were 90 min, 10 mg/L, 0.03 g/L, 100 W, and 8.0, respectively. Therefore, the synthesized ZGF system could be used as a catalyst to degrade dyes in wastewater samples. This hybrid nanocomposite consisting of zinc oxide, graphene, and iron oxide could also be used as an effective photocatalytic degrader for various dye pollutants.
基金funding supported by the National Natural Science Foundation of China (52101246)the Fundamental Research Funds for the Central Universities+1 种基金the Natural Science Foundation of Heilongjiang Province, China (YQ2022B006)the funding supported by the Natural Science Foundation of Anhui Province (2208085MB21)。
文摘Aqueous zinc ion batteries(ZIBs) are attracting considerable attentions for practical energy storage because of their low cost and high safety.Nevertheless,the traditional manganese oxide cathode materials suffer from the low intrinsic electronic conductivity,sluggish ions diffusion kinetics,and structural collapse,hindering their large-scale application.Herein,we successfully developed a latent amorphous Mn_(1.8)Fe_(1.2)O_(4) hollow nanocube(a-H-MnFeO) cathode material derived from Prussian blue analogue precursor.The amorphous nature endows the cathode with lower diffusion barrier and narrower band gap compared with crystalline counterpart,resulting in the superior Zn^(2+) ions and electrons transport kinetics.Hollow structure can furnish abundant surface sites and suppress the structural collapse during the repeated charge/discharge processes.By virtue of the multiple advantageous features,the a-H-MnFeO cathode exhibits exceptional electrochemical performance,in terms of high capacity,excellent rate capability,and prolonged cycle life.This strategy will pave the way for the structural design of emerging cathode materials.
基金Supported by National Natural Science Foundation of China(32060228)。
文摘Superparamagnetic iron oxide nanoparticles(SPIONs)have immeasurable potentials in many fields such as nanobiotechnology and biomedical engineering because of their superparamagnetic properties and small particle size.This review introduces the methods for SPIONs synthesis,including co-precipitation,thermal decomposition,microemulsion and hydrothermal reaction,and surface modification of SPIONs with organometallic and inorganic metals,surface modification for targeted drug delivery,and the use of SPIONs as a contrast agent.In addition,this article also provides an overview of recent progress in SPIONs for the treatment of glioma,lung cancer and breast cancer.
文摘The preparation of γ-Fe<sub>2</sub>O<sub>3</sub>/Gd<sub>2</sub>O<sub>3</sub> nanocomposite for possible use in magnetic hyperthermia application was done by ball milling technique. The nanocomposite was characterized by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The heating efficiency and the effect of milling time (5 h and 30 h) on the structural and magnetic properties of the nanocomposite were reported. XRD analysis confirms the formation of the nanocomposite, while magnetization measurements show that the milled sample present hysteresis with low coercivity and remanence. The specific absorption rate (SAR) under an alternating magnetic field is investigated as a function of the milling time. A mean heating efficiency of 68 W/g and 28.7 W/g are obtained for 5 h and 30 h milling times respectively at 332 kHz and 170 Oe. The results showed that the obtained nanocomposite for 5 h milling time is a promising candidate for magnetic hyperthermia due to his properties which show an interesting magnetic behavior and high specific absorption rate.
基金This project was supported by a grant from the National Natural Science Foundation of China (No. 30271300).
文摘Objective: Application of magnetic nanoparticles as gene carrier in gene therapy has developed quickly. This study was designed to investigate the preparation of superparamagnetic dextran-coated iron oxide nanoparticles (SDION) and the feasibility of SDION used as a novel gene carrier for plasmid DNA in vitro. Methods: SDION were prepared by chemical coprecipitation and separated by gel filtration on Sephacryl S-300HR, characterized by TEM, laser scattering system and Vibrating Sample Magnetometer Signal Processor. The green fluorescent protein (pGFP-C2) plasmid DNA was used as target gene. SDION-pGFP-C2 conjugate compounds were produced by means of oxidoreduction reaction. The connection ratio of SDION and pGFP-C2 DNA was analyzed and evaluated by agarose electrophoresis and the concentration of pGFP-C2 in supernatant was measured. Using liposome as control, the transfection efficiency of SDION and liposome was respectively evaluated under fluorescence microscope in vitro. Results: The diameter of SDION ranges from 3 nm to 8 nm, the effective diameter was 59.2 nm and the saturation magnetization was 0.23 emu/g. After SDION were reasonably oxidized, SDION could connect with pGFP-C2 to a high degree. The transfection efficiency of SDION as gene carrier was higher than that of liposome. Conclusion: The successes in connecting SDION with pGFP-C2 plasmid by means of oxidoreduction reaction and in transferring pGFP-C2 gene into human bladder cancer BIU-87 cells in vitro provided the experimental evidence for the feasibility of SDION used as a novel gene carrier.
文摘The study focused on the effect of several typical competing solutes on removal of arsenic with Fe2O3 and Al2O3. The test results indicate that chloride, nitrate and sulfate did not have detectable effects, and that selenium(Ⅳ) (Se(Ⅳ)) and vanadium(Ⅴ) (V(Ⅴ)) showed slight effects on the adsorption of As(Ⅴ) with Fe2O3. The results also showed that adsorption of As(Ⅴ) on A12O3 was not affected by chloride and nitrate anions, but slightly by Se(Ⅳ) and V(Ⅴ) ions. Unlike the adsorption of As(Ⅴ) with Fe2O3, that with Fe2O3 was affected by the presence of sulfate in water solutions. Both phosphate and silica have significant adverse effects on the adsorption of As(Ⅴ) adsorption with Fe2O3 and Al2O3. Compared to the other tested anions, phosphate anion was found to be the most prominent solute affecting the As(Ⅴ) adsorption with Fe2O3 and Al2O3. In general, Fe2O3 has a better performance than Al2O3 in removal of As(Ⅴ) within a water environment where multi competing solutes are present.
基金Supported by the National Natural Science Foundation of China (20736004)the State Key Development Program for Basic Research of China (2007CB613502)
文摘Kinetics parameters of iron oxide reduction by hydrogen were evaluated by the isothermal method in a differential micro-packed bed. Influence of external diffusion, internal diffusion and heat transfer on the intrinsic reaction rate was investigated and the conditions free of internal and external diffusion resistance have been determined. In the experiments, in order to correctly evaluate the intrinsic kinetics parameters for reducing Fe203 to Fe3O4, the reaction temperatures were set between 440 ℃ and 490 ℃. However, in order to distinguish the reduction of Fe304 to FeO from that of FeO to Fe, the reaction temperature in the experiment was set to be greater than 570 ℃. Intrinsic kinetics of iron oxide reduction by hydrogen was established and the newly established kinetic models were validated by the experimental data.
基金financially supported by the National Natural Science Foundation of China (Nos. 51104014 and 51134008)
文摘Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2-CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.
基金Funded by the National Natural Science Foundation of China(Nos.51372183,50902106,51461135005)Program for New Century Excellent Talents in University(No.NCET-10-0660)
文摘Electromagnetic(EM) wave absorbing cement-based composite has promising applications in protecting civil and military buildings from electromagnetic interferences. A new idea of preparing EM wave absorbing cement-based composite is proposed by using ceramsite containing iron oxide as EM wave absorbing functional aggregate. The ceramsite was synthesized by adding 10 wt% Fe3O4 into clay and sintering at 1 200 ℃, which shows obvious dielectric and magnetic loss properties for electromagnetic wave. The maximum reflection loss(RL) of the concrete specimens prepared with the ceramsite is between-10.2--10.7 dB(corresponding to absorption greater than 90% EM energy) in the bandwidth of 8-18 GHz. In addition, the compressive strength at 28 days age of the concrete is 46 MPa, showing the potentiality of being used as structural components in buildings.
文摘Reducing the chloride content in regenerated iron oxides (RIO) from steel-pickling acid waste economically treated by Ruthner process is the most critical issue for the development of RIO as a useful raw material resource. In this paper, the results of a new method for characterization and modification of RIO produced in Mobarakeh Steel Complex were reported.
基金the National Key Fundamental Research Project of the Ministry of Science and Technology(973 2005CB221203)
文摘The effect of calcium oxide additive in iron oxide sorbent for hot gas desulfurization was investigated by XRD and TPR techniques.XRD characterization showed that CaO was highly dispersed after the calcination of sorbents.Calcium sulfate formed in the desulfurization was decomposed and regenerated to CaO by reacting with CO before the next sulfidation process.Calcium participated in every sulfidation/regeneration cycle and contributed to the enhancement of sulfur capacity.The TPR results showed that the reduction temperature of the sorbent increased with the increase of the content of calcium.Calcium played a role of retarding reduction.Therefore,the addition of calcium oxide additive will benefit the utilization of iron oxide sorbent in strongly reducing atmospheres.
基金Project(NCET-05-0630) supported by Program for New Century Excellent Talents in University of China
文摘Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for online control.Establishment of kiln process control expert system was presented,with maximum temperature of pellet and gas temperature at the feed end as control cores,and interval estimate as control strategy.Software was developed and put into application in a pellet plant.The results show that control guidance of this system is accurate and effective.After production application for nearly one year,the compressive strength and first grade rate of pellet are increased by 86 N and 2.54%,respectively,while FeO content is 0.05% lowered.This system can reveal detailed information of real time kiln process,and provide a powerful tool for online control of pellet production.