BACKGROUND: Liver failure in chronic hepatitis B (CHB) patients is a severe, life-threatening condition. Intestinal endotoxemia plays a significant role in the progress to liver failure. High mobility group box-1 (HMG...BACKGROUND: Liver failure in chronic hepatitis B (CHB) patients is a severe, life-threatening condition. Intestinal endotoxemia plays a significant role in the progress to liver failure. High mobility group box-1 (HMGB1) protein is involved in the process of endotoxemia. Regulatory T (Treg) cells maintain immune tolerance and contribute to the immunological hyporesponsiveness against HBV infection. However, the roles of HMGB1 and Treg cells in the pathogenesis of liver failure in CHB patients, and whether HMGB1 affects the immune activity of Treg cells are poorly known at present, and so were explored in this study. METHODS: The levels of HMGB1 expression were detected by ELISA, real-time RT-PCR, and Western blotting, and the percentage of CD4(+)CD25(+)CD127(low) Treg cells among CD4(+) cells was detected by flow cytometry in liver failure patients with chronic HBV infection, CHB patients, and healthy controls. Then, CD4(+)CD25(+)CD127(low) Treg cells isolated from the peripheral blood mononuclear cells from CHB patients were stimulated with HMGB1 at different concentrations or at various intervals. The effect of HMGB1 on the immune activity of Treg cells was assessed by a suppression assay of the allogeneic mixed lymphocyte response. The levels of forkhead box P3 (Foxp3) expression in Treg cells treated with HMGB1 were detected by RT-PCR and Western blotting. RESULTS: A higher level of HMGB1 expression and a lower percentage of Treg cells within the population of CIA(+) cells were found in liver failure patients than in CHB patients (82.6+/-20.1 mu g/L vs. 34.2+/-13.7 mu g/L; 4.55+/-1.34% vs. 9.52+/-3.89%, respectively). The immune activity of Treg cells was significantly weakened and the levels of Foxp3 expression were reduced in a dose- or time-dependent manner when Treg cells were stimulated with HMGB1 in vitro. CONCLUSIONS: The high level of HMGB1 and the low percentage of Treg cells play an important role in the pathogenesis of liver failure in patients with chronic HBV infection. Moreover, HMGB1 can weaken the immune activity of Treg cells. It is suggested that effectively inhibiting HMGB1 expression could be a feasible way to treat liver failure by suppressing endotoxemia and enhancing Treg cell activity.展开更多
BACKGROUND: Signal regulatory protein alpha1 (Sirpα1) is a negative regulatory factor, and inhibits receptor tyro- sine kinase-dependent cell proliferating signal. This study was undertaken to observe the effect of s...BACKGROUND: Signal regulatory protein alpha1 (Sirpα1) is a negative regulatory factor, and inhibits receptor tyro- sine kinase-dependent cell proliferating signal. This study was undertaken to observe the effect of signal regulatory proteinα1 ( Sirpα1) on gankyrin, cyclin D1, CDK4 and Fas expression in Sk-hep1 mouse hepatoma carcinoma cell line. METHODS: BOSC 23 packed cells were respectively trans- fected by means of recombinated retrovirus including pLX- SN, pLXSN-Sirpα1 and pLXSN-Sirpα1Δ4Y2 with lipofec- tin, and various plasmid virus media (viral titer 2.1 × 106 CFU/ml) were collected and infected respectively in 80% confluent Sk-hepl cells. Transfected Sk-hep1 cells were se- lectively screened with G418 (1200 μg/ml), and Sk-hep1 cell lines transfected with various plasmids were obtained. The protein expressions of gankyrin, cyclin D1, CDK4 and Fas in various Sk-hep1 lines were determined by Western blotting. Various Sk-hep1 lines were recovered to culture with 10% fetal bovine serum at 12 hours and 24 hours after starving culture with free serum for 72 hours, and cells were collected to determine the percentage of S phase cells of proliferating cycle by flow cytometry. RESULTS: Sirpα1 transfection remarkably downregulated gankyrin and cyclin D1 expression. Sirpα1Δ4Y2 downregu- lation of gankyrin expression was greater than that of Sirpα1(P <0.05), but no significant effect of Sirpα1 and Sirpα1Δ4Y2 on CDK4 and Fas protein expression was ob- served in transfected Sk-hep1 lines (P >0.05). The per- centage of S phase cells significantly decreased in Sk-hep1 cells transfected with Sirpα1 and Sirpα1Δ4Y2 plasmids (vs pLXSN Sk-hep1, P <0.05). The percentage of S phase cells in various Sk-hep1 cells increased when recovering to culture with 10% fetal bovine serum at 12 hours, but the percentage of S phase cells in Sk-hep1 cells transfected with Sirpα1 was the lowest ( vs pLXSN and Sirpα1Δ4Y2 Sk- hepl, P<0.05). The percentage of S phase cells in trans- fected pLSXN Sk-hep1 cells was the largest (vs Sirpα1 and Sirpα1Δ4Y2 Sk-hepl, P <0. 05). There was no significant difference between the transfected Sirpα1 Sk-hepl cells and Sirpα1Δ4Y2 Sk-hep1 cells (P>0.05). CONCLUSIONS: Sirpα1 decreases gankyrin and cyclin D1 expression, and inhibits proliferation of liver carcinoma cells. It may be one of the forms for an Sirpα1 negative regulation of carcinogenesis and development of hepatocel- lular carcinoma.展开更多
High mobility group box-1 protein(HMGB1),which is a nuclear protein,participates in chromatin architecture and transcriptional regulation.When released from cells,HMGB1 also plays a well-established role as a pro-infl...High mobility group box-1 protein(HMGB1),which is a nuclear protein,participates in chromatin architecture and transcriptional regulation.When released from cells,HMGB1 also plays a well-established role as a pro-inflammatory mediator during innate immune responses to injury.In the initial stage of injury,there is a release of large quantities of early pro-inflammatory mediators to initiate or perpetuate immune responses against pathogens,but this pro-inflammatory period is transient,and it is followed by a prolonged period of immune suppression.At present,several lines of evidences have suggested that HMGB1 is a late cytokine provoking delayed endotoxin morbidity,which may enhance the production of early proinflammatory mediators,and it can contribute potently to the activation of different immune cells and play a role in the development of host cell-mediated immunity.The biology of HMGB1 has been extensively studied as a pro-inflammatory cytokine of systemic inflammation,however,this review will attempt to provide a summary of the effects of HMGB1 on different immune cells and its regulatory mechanism in acute insults.展开更多
The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane pr...The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins aremembers of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP). The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2 is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones, cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.展开更多
基金supported by a grant from the National Natural Science Foundation of China (No. 81071342)
文摘BACKGROUND: Liver failure in chronic hepatitis B (CHB) patients is a severe, life-threatening condition. Intestinal endotoxemia plays a significant role in the progress to liver failure. High mobility group box-1 (HMGB1) protein is involved in the process of endotoxemia. Regulatory T (Treg) cells maintain immune tolerance and contribute to the immunological hyporesponsiveness against HBV infection. However, the roles of HMGB1 and Treg cells in the pathogenesis of liver failure in CHB patients, and whether HMGB1 affects the immune activity of Treg cells are poorly known at present, and so were explored in this study. METHODS: The levels of HMGB1 expression were detected by ELISA, real-time RT-PCR, and Western blotting, and the percentage of CD4(+)CD25(+)CD127(low) Treg cells among CD4(+) cells was detected by flow cytometry in liver failure patients with chronic HBV infection, CHB patients, and healthy controls. Then, CD4(+)CD25(+)CD127(low) Treg cells isolated from the peripheral blood mononuclear cells from CHB patients were stimulated with HMGB1 at different concentrations or at various intervals. The effect of HMGB1 on the immune activity of Treg cells was assessed by a suppression assay of the allogeneic mixed lymphocyte response. The levels of forkhead box P3 (Foxp3) expression in Treg cells treated with HMGB1 were detected by RT-PCR and Western blotting. RESULTS: A higher level of HMGB1 expression and a lower percentage of Treg cells within the population of CIA(+) cells were found in liver failure patients than in CHB patients (82.6+/-20.1 mu g/L vs. 34.2+/-13.7 mu g/L; 4.55+/-1.34% vs. 9.52+/-3.89%, respectively). The immune activity of Treg cells was significantly weakened and the levels of Foxp3 expression were reduced in a dose- or time-dependent manner when Treg cells were stimulated with HMGB1 in vitro. CONCLUSIONS: The high level of HMGB1 and the low percentage of Treg cells play an important role in the pathogenesis of liver failure in patients with chronic HBV infection. Moreover, HMGB1 can weaken the immune activity of Treg cells. It is suggested that effectively inhibiting HMGB1 expression could be a feasible way to treat liver failure by suppressing endotoxemia and enhancing Treg cell activity.
基金This work was supported by a grant from the NationalNatural Science Foundation of China (No. 30000159).
文摘BACKGROUND: Signal regulatory protein alpha1 (Sirpα1) is a negative regulatory factor, and inhibits receptor tyro- sine kinase-dependent cell proliferating signal. This study was undertaken to observe the effect of signal regulatory proteinα1 ( Sirpα1) on gankyrin, cyclin D1, CDK4 and Fas expression in Sk-hep1 mouse hepatoma carcinoma cell line. METHODS: BOSC 23 packed cells were respectively trans- fected by means of recombinated retrovirus including pLX- SN, pLXSN-Sirpα1 and pLXSN-Sirpα1Δ4Y2 with lipofec- tin, and various plasmid virus media (viral titer 2.1 × 106 CFU/ml) were collected and infected respectively in 80% confluent Sk-hepl cells. Transfected Sk-hep1 cells were se- lectively screened with G418 (1200 μg/ml), and Sk-hep1 cell lines transfected with various plasmids were obtained. The protein expressions of gankyrin, cyclin D1, CDK4 and Fas in various Sk-hep1 lines were determined by Western blotting. Various Sk-hep1 lines were recovered to culture with 10% fetal bovine serum at 12 hours and 24 hours after starving culture with free serum for 72 hours, and cells were collected to determine the percentage of S phase cells of proliferating cycle by flow cytometry. RESULTS: Sirpα1 transfection remarkably downregulated gankyrin and cyclin D1 expression. Sirpα1Δ4Y2 downregu- lation of gankyrin expression was greater than that of Sirpα1(P <0.05), but no significant effect of Sirpα1 and Sirpα1Δ4Y2 on CDK4 and Fas protein expression was ob- served in transfected Sk-hep1 lines (P >0.05). The per- centage of S phase cells significantly decreased in Sk-hep1 cells transfected with Sirpα1 and Sirpα1Δ4Y2 plasmids (vs pLXSN Sk-hep1, P <0.05). The percentage of S phase cells in various Sk-hep1 cells increased when recovering to culture with 10% fetal bovine serum at 12 hours, but the percentage of S phase cells in Sk-hep1 cells transfected with Sirpα1 was the lowest ( vs pLXSN and Sirpα1Δ4Y2 Sk- hepl, P<0.05). The percentage of S phase cells in trans- fected pLSXN Sk-hep1 cells was the largest (vs Sirpα1 and Sirpα1Δ4Y2 Sk-hepl, P <0. 05). There was no significant difference between the transfected Sirpα1 Sk-hepl cells and Sirpα1Δ4Y2 Sk-hep1 cells (P>0.05). CONCLUSIONS: Sirpα1 decreases gankyrin and cyclin D1 expression, and inhibits proliferation of liver carcinoma cells. It may be one of the forms for an Sirpα1 negative regulation of carcinogenesis and development of hepatocel- lular carcinoma.
基金supported,in part,by grants from the National Natural Science Foundation(81130035,30971192,81071545,81272090,81121004)the National Basic Research Program of China(2012CB518102)
文摘High mobility group box-1 protein(HMGB1),which is a nuclear protein,participates in chromatin architecture and transcriptional regulation.When released from cells,HMGB1 also plays a well-established role as a pro-inflammatory mediator during innate immune responses to injury.In the initial stage of injury,there is a release of large quantities of early pro-inflammatory mediators to initiate or perpetuate immune responses against pathogens,but this pro-inflammatory period is transient,and it is followed by a prolonged period of immune suppression.At present,several lines of evidences have suggested that HMGB1 is a late cytokine provoking delayed endotoxin morbidity,which may enhance the production of early proinflammatory mediators,and it can contribute potently to the activation of different immune cells and play a role in the development of host cell-mediated immunity.The biology of HMGB1 has been extensively studied as a pro-inflammatory cytokine of systemic inflammation,however,this review will attempt to provide a summary of the effects of HMGB1 on different immune cells and its regulatory mechanism in acute insults.
文摘The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins aremembers of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP). The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2 is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones, cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.