The Qinling Orogen is a composite orogenic belt that can be subdivided into the North and South Qinling,broadly separated by the Shangdan suture zone.These two orogenic belts were generated by subduction-collisional p...The Qinling Orogen is a composite orogenic belt that can be subdivided into the North and South Qinling,broadly separated by the Shangdan suture zone.These two orogenic belts were generated by subduction-collisional processes in the Early Paleozoic and Late Triassic,respectively.During the Late Jurassic to Early Cretaceous,the eastern portion of the Qinling Orogen was tectonically reactivated due to westerly subduction of the Izanagi plate underneath the East China continental margin.The Qinling Orogen is well-endowed with numerous Au,Mo,Ag-Pb-Zn deposits that predominantly formed in the Late Triassic to Early Cretaceous,with rare Paleozoic varieties documented.In this study,we present garnet and zircon U-Pb dating results to show that the Huoshenmiao iron skarn deposit in the Tongbai area of North Qinling orogenic belt formed in the Early Silurian and is genetically related to subduction-related magmatism.The Huoshenmiao deposit consists of lenticular and stratiform orebodies that contain massive or densely disseminated magnetite variably associated with garnet,diopside,epidote,hornblende,and actinolite.Garnets from iron ores are andradite and grossular in composition(Ad_(83.1)Gr_(13.3)-Ad_(86.5)Gr_(10.2))and characterized by enrichment in light rare earth elements(ΣLREE=57.85-103.82 ppm)and depletion in heavy rare earth elements(ΣHREE=5.50-11.34 ppm),with significantly positive Eu and Ce anomalies(δEu of 1.09-1.89 andδCe of 1.39-1.69).These compositional signatures are distinctly different from those of garnets in the ore-hosting metamorphic rocks that are typically dominated by almandine,spessartine and grossular(Al_(47.4)Sp_(30.4)Gr_(13.8)-Al_(51.9)Sp_(24.8)Gr_(17.6)),depleted in LREE(0.14-0.69 ppm),enriched in HREE(95.68-841.60 ppm)and have pronounced negative Eu anomalies(δEu=0.24-0.51).In addition,garnets from iron ores of the Huoshenmiao deposit contain abundant daughter mineral-bearing,multiphase fluid inclusions,further confirming their hydrothermal origin.Two samples of those hydrothermal garnets yield U-Pb dates of 437±9 Ma and 437±10 Ma(2σ),revealing a Paleozoic mineralization event that has long been ignored and rarely documented.These garnet dates agree well with zircon U-Pb dates of 438±4 Ma to 436±3 Ma for a gabbroic diorite and 430±4 Ma for a granite intrusion in close proximity of the mine,supporting a possible genetic link between the iron mineralization and Early Silurian magmatism.The Paleozoic intrusions are enriched in large ion lithophile elements(LILEs:Ba,K,Sr)and LREEs,depleted in high field strength elements(HFSEs:Nb,Ta,P,Ti),have whole-rock(^(87)Sr/^(86)Sr)i,ε_(Nd)(t),and zirconεHf(t)values of 0.7039-0.7042,3.32-4.33,and 13.0-14.9,respectively.These geochemical and isotopic characteristics suggest that the Paleozoic intrusions were affiliated with arc magmatism triggered by subduction of the Shangdan oceanic plate in the Early Paleozoic.Recognition of the Silurian Huoshenmiao iron skarn deposit opens a new window for exploration of Paleozoic mineral resources in the Tongbai area and other portions of the North Qinling Orogen.展开更多
1研究目的钴是高温合金、电池材料、防腐材料、磁性材料等重要原料,广泛应用于航空航天、电子电器、机械制造、汽车、化工农业、陶瓷等领域,在国民经济和社会发展中具有特殊的意义。特别是从移动电子设备,到新能源汽车的动力电池,再到...1研究目的钴是高温合金、电池材料、防腐材料、磁性材料等重要原料,广泛应用于航空航天、电子电器、机械制造、汽车、化工农业、陶瓷等领域,在国民经济和社会发展中具有特殊的意义。特别是从移动电子设备,到新能源汽车的动力电池,再到电网储能,钴作为锂电池正极材料——钴酸锂的重要组成,都是不可或缺。因此,钴被世界上众多国家列为21世纪重要的关键战略资源(Gulley et al.,2018)。现今我国是世界上最大的钴资源进口国(95%依靠进口)和消费国(US Geological Survey,2018),而且钴资源紧缺,保障程度低(蒋少涌等,2019;许德如等,2019)。展开更多
The Saheb Fe-Cu skarn deposit is located in the Sanandaj-Sirjan metamorphic belt, SE Saqqez, western Iran and has been formed along the contact between the Oligo-Miocene aged Saheb granitoid and the Permian aged impur...The Saheb Fe-Cu skarn deposit is located in the Sanandaj-Sirjan metamorphic belt, SE Saqqez, western Iran and has been formed along the contact between the Oligo-Miocene aged Saheb granitoid and the Permian aged impure calcareous rocks and includes endoskarn and exoskarn. Exoskarn is widely developed and includes garnet and epidote skarn zones. The majority of mineralized zones are concentrated in garnet skarn. The relatively oxidizing mineralogical assemblage of the Saheb skarn includes garnet (andradite-grossular), pyroxene (diopside-hedenbergite), magnetite and hematite. Magnetite is the main and abundant ore mineral throughout the ore deposit. Based on field evidences and microscopic studies of skarn zone samples, two stages of prograde and retrograde alteration are distinguishable. According to the results of sample analysis of Saheb skarn intrusive body by XRF and ICP-MS techniques, the combination of this body is chiefly granite to granodiorite-diorite and belongs to the I-type granitoids, metaluminous and K-rich calc-alkaline series. The Saheb granitoid is related to the VAG (Volcanic Arc Granite) tectonic setting.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.41772081).
文摘The Qinling Orogen is a composite orogenic belt that can be subdivided into the North and South Qinling,broadly separated by the Shangdan suture zone.These two orogenic belts were generated by subduction-collisional processes in the Early Paleozoic and Late Triassic,respectively.During the Late Jurassic to Early Cretaceous,the eastern portion of the Qinling Orogen was tectonically reactivated due to westerly subduction of the Izanagi plate underneath the East China continental margin.The Qinling Orogen is well-endowed with numerous Au,Mo,Ag-Pb-Zn deposits that predominantly formed in the Late Triassic to Early Cretaceous,with rare Paleozoic varieties documented.In this study,we present garnet and zircon U-Pb dating results to show that the Huoshenmiao iron skarn deposit in the Tongbai area of North Qinling orogenic belt formed in the Early Silurian and is genetically related to subduction-related magmatism.The Huoshenmiao deposit consists of lenticular and stratiform orebodies that contain massive or densely disseminated magnetite variably associated with garnet,diopside,epidote,hornblende,and actinolite.Garnets from iron ores are andradite and grossular in composition(Ad_(83.1)Gr_(13.3)-Ad_(86.5)Gr_(10.2))and characterized by enrichment in light rare earth elements(ΣLREE=57.85-103.82 ppm)and depletion in heavy rare earth elements(ΣHREE=5.50-11.34 ppm),with significantly positive Eu and Ce anomalies(δEu of 1.09-1.89 andδCe of 1.39-1.69).These compositional signatures are distinctly different from those of garnets in the ore-hosting metamorphic rocks that are typically dominated by almandine,spessartine and grossular(Al_(47.4)Sp_(30.4)Gr_(13.8)-Al_(51.9)Sp_(24.8)Gr_(17.6)),depleted in LREE(0.14-0.69 ppm),enriched in HREE(95.68-841.60 ppm)and have pronounced negative Eu anomalies(δEu=0.24-0.51).In addition,garnets from iron ores of the Huoshenmiao deposit contain abundant daughter mineral-bearing,multiphase fluid inclusions,further confirming their hydrothermal origin.Two samples of those hydrothermal garnets yield U-Pb dates of 437±9 Ma and 437±10 Ma(2σ),revealing a Paleozoic mineralization event that has long been ignored and rarely documented.These garnet dates agree well with zircon U-Pb dates of 438±4 Ma to 436±3 Ma for a gabbroic diorite and 430±4 Ma for a granite intrusion in close proximity of the mine,supporting a possible genetic link between the iron mineralization and Early Silurian magmatism.The Paleozoic intrusions are enriched in large ion lithophile elements(LILEs:Ba,K,Sr)and LREEs,depleted in high field strength elements(HFSEs:Nb,Ta,P,Ti),have whole-rock(^(87)Sr/^(86)Sr)i,ε_(Nd)(t),and zirconεHf(t)values of 0.7039-0.7042,3.32-4.33,and 13.0-14.9,respectively.These geochemical and isotopic characteristics suggest that the Paleozoic intrusions were affiliated with arc magmatism triggered by subduction of the Shangdan oceanic plate in the Early Paleozoic.Recognition of the Silurian Huoshenmiao iron skarn deposit opens a new window for exploration of Paleozoic mineral resources in the Tongbai area and other portions of the North Qinling Orogen.
文摘1研究目的钴是高温合金、电池材料、防腐材料、磁性材料等重要原料,广泛应用于航空航天、电子电器、机械制造、汽车、化工农业、陶瓷等领域,在国民经济和社会发展中具有特殊的意义。特别是从移动电子设备,到新能源汽车的动力电池,再到电网储能,钴作为锂电池正极材料——钴酸锂的重要组成,都是不可或缺。因此,钴被世界上众多国家列为21世纪重要的关键战略资源(Gulley et al.,2018)。现今我国是世界上最大的钴资源进口国(95%依靠进口)和消费国(US Geological Survey,2018),而且钴资源紧缺,保障程度低(蒋少涌等,2019;许德如等,2019)。
文摘The Saheb Fe-Cu skarn deposit is located in the Sanandaj-Sirjan metamorphic belt, SE Saqqez, western Iran and has been formed along the contact between the Oligo-Miocene aged Saheb granitoid and the Permian aged impure calcareous rocks and includes endoskarn and exoskarn. Exoskarn is widely developed and includes garnet and epidote skarn zones. The majority of mineralized zones are concentrated in garnet skarn. The relatively oxidizing mineralogical assemblage of the Saheb skarn includes garnet (andradite-grossular), pyroxene (diopside-hedenbergite), magnetite and hematite. Magnetite is the main and abundant ore mineral throughout the ore deposit. Based on field evidences and microscopic studies of skarn zone samples, two stages of prograde and retrograde alteration are distinguishable. According to the results of sample analysis of Saheb skarn intrusive body by XRF and ICP-MS techniques, the combination of this body is chiefly granite to granodiorite-diorite and belongs to the I-type granitoids, metaluminous and K-rich calc-alkaline series. The Saheb granitoid is related to the VAG (Volcanic Arc Granite) tectonic setting.