A field study on the estimation and analysis of iron stability in drinking water distribution system was carried out in a city of China. The stability of iron ion was estimated by pC-pH figure. It was found that iron ...A field study on the estimation and analysis of iron stability in drinking water distribution system was carried out in a city of China. The stability of iron ion was estimated by pC-pH figure. It was found that iron ion was unstable, with a high Fe (OH)3 precipitation tendency and obvious increase in turbidity. The outer layer of the corrosion scale was compact, while the inner core was porous. The main composition of the scale was iron, and the possible compound constitutes of the outer scale were α-FeOH, γ-FeOOH, α-Fe2O3, γ-F2O3, FeCl3, while the inner were Fe3O4, FeCl2, FeCO3. According to the characteristics of the corrosion scale, it was thought that the main reason for iron instability was iron release from corrosion scale. Many factors such as pipe materials, dissolved oxygen and chlorine residual affect iron release. Generally, higher iron release occurred with lower dissolved oxygen or chlorine residual concentration, while lower iron release occurred with higher dissolved oxygen or chlorine residual concentration. The reason was considered that the passivated out layer of scale of ferric oxide was broken down by reductive reaction in a condition of low oxidants concentration, which would result more rapid corrosion of the nine and red water phenomenon.展开更多
A new fi ber optic sensor based on the oxidation of 2,4-dichlorophenol(DCP) catalyzed by iron(II) phthalocyanine(Fe(II)Pc) was developed for the determination of DCP. The optical oxygen sensing fi lm containin...A new fi ber optic sensor based on the oxidation of 2,4-dichlorophenol(DCP) catalyzed by iron(II) phthalocyanine(Fe(II)Pc) was developed for the determination of DCP. The optical oxygen sensing fi lm containing fl uorescence indicator Ru(bpy)3Cl2 was used to detect the consumption of oxygen in solution. Moreover, a lock-in amplifier was used to determine the lifetime of the sensor head by detecting its phase delay change. The results reveal that the sensor has a linear detection range of 1.0×10^-6- 9.0×10^-5 mol/L and a response time of 5 min. The sensor also has high selectivity, good repeatability and stability. It can be used effectively to determine DCP concentration in real samples.展开更多
Toxicity studies considering both the bare and stabilized forms of zero valent iron nanoparticles(nZVI) could be timely, given that ecological risks identified are minimized through modification or with substitution...Toxicity studies considering both the bare and stabilized forms of zero valent iron nanoparticles(nZVI) could be timely, given that ecological risks identified are minimized through modification or with substitution of approaches in the synthesis, development and environmental application of the nanoparticles before succeeding to volume production.This review is focused on the fate, transport and toxicological implications of the bare nZVI and surface modified particles used for environmental applications.展开更多
This study investigated the interaction between Cu^2+and nano zero-valent iron(NZVI)coated with three types of stabilizers(i.e., polyacrylic acid [PAA], Tween-20 and starch) by examining the Cu^2+ uptake, coll...This study investigated the interaction between Cu^2+and nano zero-valent iron(NZVI)coated with three types of stabilizers(i.e., polyacrylic acid [PAA], Tween-20 and starch) by examining the Cu^2+ uptake, colloidal stability and mobility of surface-modified NZVI(SM-NZVI) in the presence of Cu^2+. The uptake of Cu^2+ by SM-NZVI and the colloidal stability of the Cu-bearing SM-NZVI were examined in batch tests. The results showed that NZVI coated with different modifiers exhibited different affinities for Cu^2+, which resulted in varying colloidal stability of different SM-NZVI in the presence of Cu^2+. The presence of Cu^2+ exerted a slight influence on the aggregation and settling of NZVI modified with PAA or Tween-20. However, the presence of Cu^2+caused significant aggregation and sedimentation of starch-modified NZVI, which is due to Cu^2+complexation with the starch molecules coated on the surface of the particles. Column experiments were conducted to investigate the co-transport of Cu^2+ in association with SM-NZVI in water-saturated quartz sand. It was presumed that a physical straining mechanism accounted for the retention of Cu-bearing SM-NZVI in the porous media. Moreover, the enhanced aggregation of SM-NZVI in the presence of Cu^2+ may be contributing to this straining effect.展开更多
Iron water treatment residues (Fe-WTR) are a free by-product of the treatment of drinking water with high concentration of iron oxides and potential for arsenic sorption. This paper aims at applying Fe- WTR to a con...Iron water treatment residues (Fe-WTR) are a free by-product of the treatment of drinking water with high concentration of iron oxides and potential for arsenic sorption. This paper aims at applying Fe- WTR to a contaminated site, measuring the reduction in contaminant leaching, and discussing the design of delivery and mixing strategy for soil stabilization at field scale and present a cost-effective method of soil mixing by connnon contractor machinery. Soil contaminated by As, Cr, and Cu at an abandoned wood impregnation site was amended with 0.22% (dw) Fe-WTR. To evaluate the full scale amendment a 100 mtest site and a control site (without amendment) were monitored for 14 months. Also soil analysis of Fe to evaluate the degree of soil and Fe-WTR mixing was done. Stabilization with Fe-WTR had a significant effect on leachable contaminants, reducing pore water As by 93%, Cu by 91% and Cr by 95% in the upper samplers. Dosage and mixing of Fe-WTR in the soil proved to be difficult in the deeper part of the field, and Pire water concentrations of arsenic was generally higher.Despite water logged conditions no increase in dissolved iron or arsenic was observed in the amended soil. Our field scale amendment of contaminated soil was overall successful in decreasing leaching of As, Cr and Cu. With minor improvements in the mixing and delivery strategy, this stabilization method is suggested for use in cases, where leaching ofCu, Cr and As constitutes a risk for groundwater and freshwater.展开更多
文摘A field study on the estimation and analysis of iron stability in drinking water distribution system was carried out in a city of China. The stability of iron ion was estimated by pC-pH figure. It was found that iron ion was unstable, with a high Fe (OH)3 precipitation tendency and obvious increase in turbidity. The outer layer of the corrosion scale was compact, while the inner core was porous. The main composition of the scale was iron, and the possible compound constitutes of the outer scale were α-FeOH, γ-FeOOH, α-Fe2O3, γ-F2O3, FeCl3, while the inner were Fe3O4, FeCl2, FeCO3. According to the characteristics of the corrosion scale, it was thought that the main reason for iron instability was iron release from corrosion scale. Many factors such as pipe materials, dissolved oxygen and chlorine residual affect iron release. Generally, higher iron release occurred with lower dissolved oxygen or chlorine residual concentration, while lower iron release occurred with higher dissolved oxygen or chlorine residual concentration. The reason was considered that the passivated out layer of scale of ferric oxide was broken down by reductive reaction in a condition of low oxidants concentration, which would result more rapid corrosion of the nine and red water phenomenon.
基金Funded by the National Natural Science Foundation of China(Nos.61377092 and 51303115)
文摘A new fi ber optic sensor based on the oxidation of 2,4-dichlorophenol(DCP) catalyzed by iron(II) phthalocyanine(Fe(II)Pc) was developed for the determination of DCP. The optical oxygen sensing fi lm containing fl uorescence indicator Ru(bpy)3Cl2 was used to detect the consumption of oxygen in solution. Moreover, a lock-in amplifier was used to determine the lifetime of the sensor head by detecting its phase delay change. The results reveal that the sensor has a linear detection range of 1.0×10^-6- 9.0×10^-5 mol/L and a response time of 5 min. The sensor also has high selectivity, good repeatability and stability. It can be used effectively to determine DCP concentration in real samples.
文摘Toxicity studies considering both the bare and stabilized forms of zero valent iron nanoparticles(nZVI) could be timely, given that ecological risks identified are minimized through modification or with substitution of approaches in the synthesis, development and environmental application of the nanoparticles before succeeding to volume production.This review is focused on the fate, transport and toxicological implications of the bare nZVI and surface modified particles used for environmental applications.
基金supported by the Fundamental Research Funds for the Central Universities (531107040788)the National Natural Science Foundation of China (Nos. 51409100, 51039001, 51378190)the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13R17)
文摘This study investigated the interaction between Cu^2+and nano zero-valent iron(NZVI)coated with three types of stabilizers(i.e., polyacrylic acid [PAA], Tween-20 and starch) by examining the Cu^2+ uptake, colloidal stability and mobility of surface-modified NZVI(SM-NZVI) in the presence of Cu^2+. The uptake of Cu^2+ by SM-NZVI and the colloidal stability of the Cu-bearing SM-NZVI were examined in batch tests. The results showed that NZVI coated with different modifiers exhibited different affinities for Cu^2+, which resulted in varying colloidal stability of different SM-NZVI in the presence of Cu^2+. The presence of Cu^2+ exerted a slight influence on the aggregation and settling of NZVI modified with PAA or Tween-20. However, the presence of Cu^2+caused significant aggregation and sedimentation of starch-modified NZVI, which is due to Cu^2+complexation with the starch molecules coated on the surface of the particles. Column experiments were conducted to investigate the co-transport of Cu^2+ in association with SM-NZVI in water-saturated quartz sand. It was presumed that a physical straining mechanism accounted for the retention of Cu-bearing SM-NZVI in the porous media. Moreover, the enhanced aggregation of SM-NZVI in the presence of Cu^2+ may be contributing to this straining effect.
文摘Iron water treatment residues (Fe-WTR) are a free by-product of the treatment of drinking water with high concentration of iron oxides and potential for arsenic sorption. This paper aims at applying Fe- WTR to a contaminated site, measuring the reduction in contaminant leaching, and discussing the design of delivery and mixing strategy for soil stabilization at field scale and present a cost-effective method of soil mixing by connnon contractor machinery. Soil contaminated by As, Cr, and Cu at an abandoned wood impregnation site was amended with 0.22% (dw) Fe-WTR. To evaluate the full scale amendment a 100 mtest site and a control site (without amendment) were monitored for 14 months. Also soil analysis of Fe to evaluate the degree of soil and Fe-WTR mixing was done. Stabilization with Fe-WTR had a significant effect on leachable contaminants, reducing pore water As by 93%, Cu by 91% and Cr by 95% in the upper samplers. Dosage and mixing of Fe-WTR in the soil proved to be difficult in the deeper part of the field, and Pire water concentrations of arsenic was generally higher.Despite water logged conditions no increase in dissolved iron or arsenic was observed in the amended soil. Our field scale amendment of contaminated soil was overall successful in decreasing leaching of As, Cr and Cu. With minor improvements in the mixing and delivery strategy, this stabilization method is suggested for use in cases, where leaching ofCu, Cr and As constitutes a risk for groundwater and freshwater.