期刊文献+
共找到8,318篇文章
< 1 2 250 >
每页显示 20 50 100
Preparation of Manganese Oxide and Its Adsorption Properties
1
作者 贺跃 王海峰 +4 位作者 YANG Pan WANG Song CHEN Xiaoliang YANG Chunyuan 王家伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1031-1040,共10页
The in-situ oxidation of manganese sulfate solution with H2O_(2),sodium hypochlorite,potassium permanganate and oxygen as oxidants was investigated by means of SEM,EDS,XRD,BET and infrared analysis,and the effects of ... The in-situ oxidation of manganese sulfate solution with H2O_(2),sodium hypochlorite,potassium permanganate and oxygen as oxidants was investigated by means of SEM,EDS,XRD,BET and infrared analysis,and the effects of different oxidants on the morphology,phase composition,surface properties and specific surface area of manganese oxides were investigated.The experimental results show that the diameter of manganese oxide particles prepared with H_(2)O_(2)is the smallest,about 50 nm,and the specific surface area is the largest,63.8764 m^(2)/g.It has the advantages of abundant surface hydroxyl groups,no introduction of other impurities and large adsorption potential.It is most suitable to be used as an oxidant for oxidizing manganese sulfate solution to prepare manganese oxide by in-situ oxidation.Nano manganese oxide prepard by H_(2)O_(2)in-situ oxidation method is used as adsorbent to adsorb cobalt and nickel impurities in manganese sulfate.When the reaction pH is 6,the reaction time is 30min and the amount of adsorbent is 1.0 g,the adsorption rates of cobalt and nickel impurities in 100ml manganese sulfate solution are 97.59%and 97.67%,respectively.The residual amounts of cobalt and nickel meet the industrial process standard of first-class products(Co,Ni w/%≤0.005)of high-purity manganese sulfate(Hg/t4823-2015)for batteries.The study plays a guiding role in the preparation and regulation of manganese oxide,and provides a new method with high efficiency,purity and adsorbent availability for the preparation of high-purity manganese sulfate solution. 展开更多
关键词 manganese oxide in situ oxidation ADSORBENT regulation mechanism PHYSICAL chemical properties
下载PDF
Synergism of preintercalated manganese ions and lattice water in vanadium oxide cathodes for high-capacity and long-life Zn-ion batteries
2
作者 Mengjing Wu Rongrong Li +3 位作者 Kai Yang Lijiang Yin Weikang Hu Xiong Pu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期709-717,共9页
Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials... Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials.In this work,we present an intercalation mechanism-based cathode materials for AZIB,i.e.the vanadium oxide with pre-intercalated manganese ions and lattice water(noted as MVOH).The synergistic effect between Mn^(2+)and lattice H_(2)O not only expands the interlayer spacing,but also significantly enhances the structural stability.Systematic in-situ and ex-situ characterizations clarify the Zn^(2+)/H^(+)co–(de)intercalation mechanism of MVOH in aqueous electrolyte.The demonstrated remarkable structure stability,excellent kinetic behaviors and ion-storage mechanism together enable the MVOH to demonstrate satisfactory specific capacity of 450 mA h g^(−1)at 0.2 A g^(−1),excellent rate performance of 288.8 mA h g^(−1)at 10 A g^(−1)and long cycle life over 20,000 cycles at 5 A g^(−1).This work provides a practical cathode material,and contributes to the understanding of the ion-intercalation mechanism and structural evolution of the vanadium-based cathode for AZIBs. 展开更多
关键词 Zn-ion batteries Vanadium oxide Pre-intercalation Lattice water manganese ion
下载PDF
Enhanced recovery of high-purity Fe powder from iron-rich electrolytic manganese residue by slurry electrolysis
3
作者 Wenxing Cao Jiancheng Shu +5 位作者 Jiaming Chen Zihan Li Songshan Zhou Shushu Liao Mengjun Chen Yong Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期531-538,共8页
Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In thi... Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In this study,the slurry electrolysis technique was used to recover high-purity Fe powder from IREMR.The effects of IREMR and H2SO4 mass ratio,current density,reaction temper-ature,and electrolytic time on the leaching and current efficiencies of Fe were studied.According to the results,high-purity Fe powder can be recovered from the cathode plate,and the slurry electrolyte can be recycled.The leaching efficiency,current efficiency,and purity of Fe reached 92.58%,80.65%,and 98.72wt%,respectively,at a 1:2.5 mass ratio of H2SO4 and IREMR,reaction temperature of 60℃,electric current density of 30 mA/cm^(2),and reaction time of 8 h.In addition,vibrating sample magnetometer(VSM)analysis showed that the coercivity of electrolytic iron powder was 54.5 A/m,which reached the advanced magnetic grade of electrical pure-iron powder(DT4A coercivity standard).The slurry electrolytic method provides fundamental support for the industrial application of Fe resource recovery in IRMER. 展开更多
关键词 iron-rich electrolytic manganese residue slurry electrolysis high-purity iron powder leaching efficiency current efficiency
下载PDF
Advances of manganese-oxides-based catalysts for indoor formaldehyde removal 被引量:1
4
作者 Jiayu Zheng Wenkang Zhao +5 位作者 Liyun Song Hao Wang Hui Yan Ge Chen Changbao Han Jiujun Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期626-653,共28页
Formaldehyde(HCHO)has been identified as one of the most common indoor pollutions nowadays.Manganese oxides(MnO_(x))are considered to be a promising catalytic material used in indoor HCHO oxidation removal due to thei... Formaldehyde(HCHO)has been identified as one of the most common indoor pollutions nowadays.Manganese oxides(MnO_(x))are considered to be a promising catalytic material used in indoor HCHO oxidation removal due to their high catalytic activity,low-cost,and environmentally friendly.In this paper,the progress in developing MnO_(x)-based catalysts for HCHO removal is comprehensively reviewed for exploring the mechanisms of catalytic oxidation and catalytic deactivation.The catalytic oxidation mechanisms based on three typical theory models(Mars-van-Krevelen,Eley-Rideal and Langmuir-Hinshelwood)are discussed and summarized.Furthermore,the research status of catalytic deactivation,catalysts’regeneration and integrated application of MnO_(x)-based catalysts for indoor HCHO removal are detailed in the review.Finally,the technical challenges in developing MnO_(x)-based catalysts for indoor HCHO removal are analyzed and the possible research direction is also proposed for overcoming the challenges toward practical application of such catalysts. 展开更多
关键词 manganese dioxide(MnOx) Formaldehyde(HCHO) Catalytic oxidation Room temperature Indoors
下载PDF
An amorphous manganese iron oxide hollow nanocube cathode for aqueous zinc ion batteries
5
作者 Fengyang Jing Chade Lv +6 位作者 Liangliang Xu Yaru Shang Jian Pei Pin Song Yuanheng Wang Gang Chen Chunshuang Yan 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期314-321,I0008,共9页
Aqueous zinc ion batteries(ZIBs) are attracting considerable attentions for practical energy storage because of their low cost and high safety.Nevertheless,the traditional manganese oxide cathode materials suffer from... Aqueous zinc ion batteries(ZIBs) are attracting considerable attentions for practical energy storage because of their low cost and high safety.Nevertheless,the traditional manganese oxide cathode materials suffer from the low intrinsic electronic conductivity,sluggish ions diffusion kinetics,and structural collapse,hindering their large-scale application.Herein,we successfully developed a latent amorphous Mn_(1.8)Fe_(1.2)O_(4) hollow nanocube(a-H-MnFeO) cathode material derived from Prussian blue analogue precursor.The amorphous nature endows the cathode with lower diffusion barrier and narrower band gap compared with crystalline counterpart,resulting in the superior Zn^(2+) ions and electrons transport kinetics.Hollow structure can furnish abundant surface sites and suppress the structural collapse during the repeated charge/discharge processes.By virtue of the multiple advantageous features,the a-H-MnFeO cathode exhibits exceptional electrochemical performance,in terms of high capacity,excellent rate capability,and prolonged cycle life.This strategy will pave the way for the structural design of emerging cathode materials. 展开更多
关键词 Aqueous zinc-ion batteries manganese iron oxide cathode Amorphous structure Hollow nanostructure lons transport kinetics
下载PDF
Selective catalytic oxidation of NO over iron and manganese oxides supported on mesoporous silica 被引量:12
6
作者 Junfeng Zhang Yan Huang Xia Chen 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第3期273-277,共5页
The selective catalytic oxidation (SCO) of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios. Effects of the amount of manganese and i... The selective catalytic oxidation (SCO) of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios. Effects of the amount of manganese and iron, oxygen, and calcination temperature on NO conversion were also investigated. It was found that the Mn-Fe/MPS catalyst with a Mn/Fe molar ratio of 1 showed the highest activity at the calcination temperature of 400 °C. The results showed that over this catalyst, NO conversion reached 70% under the condition of 280 °C and a space velocity of 5000 h-1. SO2 and H2O had no adverse impact on the reaction activity when the SCO reaction temperature was above 240 °C. In addition, the SCO activity was suppressed gradually in the presence of SO2 and H2O below 240 °C, and such an effect was reversible after heating treatment. 展开更多
关键词 selective catalytic oxidation of NO nitrogen monoxide mesoporous silica iron manganese
下载PDF
Lead and Cadmium Adsorption onto Iron Oxides and Manganese Oxides in the Natural Surface Coatings Collected on Natural Substances in the Songhua River of China 被引量:1
7
作者 DONG De-ming ZHAO Xing-min +2 位作者 HUA Xiu-yi ZHANG Jing-jing WU Shi-ming 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第6期659-664,共6页
Natural surface coatings collected from natural substances (NSCsNS) were employed to study the roles of the main chemical components (iron oxides, manganese oxides, and other components) in controlling the adsorpt... Natural surface coatings collected from natural substances (NSCsNS) were employed to study the roles of the main chemical components (iron oxides, manganese oxides, and other components) in controlling the adsorption of lead(Pb) and cadmium(Cd) in aquatic environments. The selective chemical extraction followed by the adsorption of Pb and Cd experiments and statistical analysis, were used to investigate the adsorption property of each component. Hydroxylamine hydrochloride was used to remove manganese oxides selectively, and sodium dithionite was used to extract iron oxides and manganese oxides. The result indicated that iron oxides and manganese oxides played an important role in the adsorption of Pb and Cd on NSCsNS, and the relative contribution was about two-thirds. The contribution of manganese oxides was the greatest, with a lesser role indicated for other components. The adsorption ability of manganese oxides for Pb and Cd was greater than that of iron oxides or other components for Pb and Cd. The Pb adsorption observed in each component was greater than Cd adsorption. 展开更多
关键词 Surface coating iron oxide and manganese oxide EXTRACTION Lead and cadmium adsorption
下载PDF
Carbon monoxide oxidation on copper manganese oxides prepared by selective etching with ammonia 被引量:5
8
作者 石磊 胡臻浩 +1 位作者 邓高明 李文翠 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1920-1927,共8页
A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and c... A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and catalytic properties of the copper manganese oxides was investigated using elemental analysis, nitrogen physisorption, X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduc- tion, and Oz temperature-programmed desorption combined with catalytic oxidation of CO. It was found that ammonia can selectively remove copper species from the copper manganese oxides, which correspondingly generates more defects in these oxides. An oxygen spillover from the man- ganese to the copper species was observed by H2 temperature-programmed desorption, indicating that ammonia etching enhanced the mobility of lattice oxygen species in these oxides. The Oz tem- perature-programmed desorption measurements further revealed that ammonia etching improved the ability of these oxides to release lattice oxygen. The improvement in redox properties of the copper manganese oxides following ammonia etching was associated with enhanced catalytic performance for CO oxidation. 展开更多
关键词 Copper manganese oxide Selective etchingRedox property CO oxidation Co-precipitation
下载PDF
Striking Stabilization Effect of Spinel Cobalt Oxide Oxygen Evolution Electrocatalysts in Neutral pH by Dual-Sites Iron Incorporation
9
作者 Shuairu Zhu Xue Wang +4 位作者 Jiabo Le Na An Jianming Li Deyu Liu Yongbo Kuang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期152-160,共9页
Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels h... Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels have drawn a considerable amount of attention but most of them operate in alkali solutions.However,the frequently studied Co-Fe spinel system never exhibits appreciable stability in nonbasic conditions,not to mention attract further investigation on its key structural motif and transition states for activity loss.Herein,we report exceptional stable Co-Fe spinel oxygen evolution catalysts(~30%Fe is optimal)in a neutral electrolyte,owing to its unique metal ion arrangements in the crystal lattice.The introduced iron content enters both the octahedral and tetrahedral sites of the spinel as Fe^(2+)and Fe^(3+)(with Co ions having mixed distribution as well).Combining density functional theory calculations,we find that the introduction of Fe to Co_(3)O_(4)lowers the covalency of metal-oxygen bonds and can help suppress the oxidation of Co^(2+/3+)and 0^(2-).It implies that the Co-Fe spinel will have minor surface reconstruction and less lattice oxygen loss during the oxygen evolution reaction process in comparison with Co_(3)O_(4)and hence show much better stability.These findings suggest that there is still much chance for the spinel structures,especially using reasonable sublattices engineering via multimetal doping to develop advanced oxygen evolution catalysts. 展开更多
关键词 dual-sites iron electrocatalyst stability neutral electrolyte oxygen evolution reaction spinel oxides
下载PDF
Carbon Monoxide Modulates Auxin Transport and Nitric Oxide Signaling in Plants under Iron Deficiency Stress
10
作者 Kaiyue Hong Yasmina Radani +2 位作者 Waqas Ahmad Ping Li Yuming Luo 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期45-61,共17页
Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in mo... Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in modulating the plant’s response to iron deficiency.Iron deficiency leads to an increase in the activity of heme oxygenase(HO)and the subsequent generation of CO.Additionally,it alters the polar subcellular distribution of Pin-Formed 1(PIN1)proteins,resulting in enhanced auxin transport.This alteration,in turn,leads to an increase in NO accumulation.Furthermore,iron deficiency enhances the activity of ferric chelate reductase(FCR),as well as the expression of the Fer-like iron deficiency-induced transcription factor 1(FIT)and the ferric reduction oxidase 2(FRO2)genes in plant roots.Overexpression of the long hypocotyl 1(HY1)gene,which encodes heme oxygenase,or the CO donor treatment resulted in enhanced basipetal auxin transport,higher FCR activity,and the expression of FIT and FRO2 genes under Fe deficiency.Here,a potential mechanism is proposed:CO and NO interact with auxin to address iron deficiency stress.CO alters auxin transport,enhancing its accumulation in roots and up-regulating key iron-related genes like FRO2 and IRT1.Elevated auxin levels affect NO signaling,leading to greater sensitivity in root development.This interplay promotes FCR activity,which is crucial for iron absorption.Together,these molecules enhance iron uptake and root growth,revealing a novel aspect of plant physiology in adapting to environmental stress. 展开更多
关键词 Carbon monoxide nitric oxide AUXIN iron deficiency signal molecule PLANTS
下载PDF
High temperature oxidation of inoculated high Si/SiMo ductile cast irons in air and combustion atmospheres
11
作者 Iuliana Stan Mihai Chisamera +5 位作者 Robert Lascu Codrut Cariga Eduard Stefan Stelian Stan Denisa Anca Iulian Riposan 《China Foundry》 SCIE EI CAS CSCD 2024年第5期555-562,共8页
The present work aims to investigate the effect of heating temperature(400,600 and 800°C)and inoculating elements(Ca,Ca-Ba,Ca-RE)on oxidation behavior of ductile irons containing 5.25%Si and 4.8%Si-2.3%Mo in dry ... The present work aims to investigate the effect of heating temperature(400,600 and 800°C)and inoculating elements(Ca,Ca-Ba,Ca-RE)on oxidation behavior of ductile irons containing 5.25%Si and 4.8%Si-2.3%Mo in dry air and combustion gas containing water vapour(natural gas burning).The oxidation is influenced by the gas atmosphere type,the iron alloying system,and the inoculating elements depending on the heating temperature.The weight gain increases from 0.001%-0.1%(400°C)to 0.05%-0.70%(600°C)and up to 0.10%-2.15%(800°C).No particular effects of the considered influencing factors are found when heating at 400°C,while at 600°C,mainly the oxidation gas atmosphere type shows a visible influence.At the highest heating temperature of 800°C,a limited increase of the weight gain is found for dry air atmosphere(up to 0.25%),but it drastically increases for combustion atmospheres(0.65%-2.15%).The water vapour presence in the combustion atmosphere is an important oxidising factor at 600-800°C.The alloying system appears to influence the oxidation behavior mainly at a heating temperature of 800°C in the combustion atmosphere,as evidenced by the lower weight gain in 5.25%silicon cast iron.Positive effects of inoculating elements increase with the heating temperature,with Ca and Ba-FeSi inoculation generally showing better performance.Irons inoculated with CaRE-FeSi exhibit a higher degree of oxidation.These results are in good relationship with the previous reported data:Ca-Ba-inoculation system appears to be better than simple Ca for improving the graphite parameters,while RE-bearing inoculant negatively affects the compactness degree of graphite particles in high-Si ductile irons.As the lower compactness degree is typical for graphite nodules in high-Si ductile irons,which negatively affects the oxidation resistance,it is necessary to employ specific metallurgical treatments to improve nodule quality.Inoculation,in particular,is a potential method to achieve this improvement. 展开更多
关键词 ductile iron spheroidal graphite Si/SiMo oxidation air/combustion atmospheres FeSiCaMgRE treatment Ca Ca-Ba Ca-RE inoculation structure characteristics
下载PDF
A critical review towards the causes of the iron-based catalysts deactivation mechanisms in the selective oxidation of hydrogen sulfide to elemental sulfur from biogas
12
作者 Mostafa Tarek Janaina S.Santos +4 位作者 Victor Márquez Mohammad Fereidooni Mohammad Yazdanpanah Supareak Praserthdam Piyasan Praserthdam 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期388-411,I0010,共25页
Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ... Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S. 展开更多
关键词 Selective oxidation of H_(2)S iron-based Catalysts Mechanism of deactivation Sulfur or sulfate deposition Transformation of iron species Sintering SDG 7
下载PDF
Comparative structural and electrochemical properties of mixed P2/O′3-layered sodium nickel manganese oxide prepared by sol-gel and electrospinning methods:Effect of Na-excess content 被引量:1
13
作者 Thongsuk Sichumsaeng Atchara Chinnakorn +3 位作者 Ornuma Kalawa Jintara Padchasri Pinit Kidkhunthod Santi Maensiri 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1887-1896,共10页
The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X... The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X-ray diffraction results of the prepared NNMO without adding Na-excess content indicate sodium loss,while the mixed phase of P2/O′3-type layered NNMO presented after adding Na-excess content.Compared with the sol-gel method,the secondary phase of NiO is more suppressed by using the electrospinning method,which is further confirmed by field emission scanning electron microscope images.N_(2) adsorption-desorption isotherms show no remarkably difference in specific surface areas between different preparation methods and Na-excess contents.The analysis of X-ray absorption near edge structure indicates that the oxidation states of Ni and Mn are+2 and+4,respectively.For the electrochemical properties,superior electrochemical performance is observed in the NNMO electrode with a low Na-excess content of 5wt%.The highest specific capacitance is 36.07 F·g^(-1)at0.1 A·g^(-1)in the NNMO electrode prepared by using the sol-gel method.By contrast,the NNMO electrode prepared using the electrospinning method with decreased Na-excess content shows excellent cycling stability of 100%after charge-discharge measurements for 300 cycles.Therefore,controlling the Na excess in the precursor together with the preparation method is important for improving the electrochemical performance of Na-based electrode materials in supercapacitors. 展开更多
关键词 sodium nickel manganese oxide mixed P2/O′3-type Na-excess content sol-gel method electrospinning method electrochemical properties
下载PDF
Solvent-free selective oxidation of cyclohexane with molecular oxygen over manganese oxides:Effect of the calcination temperature 被引量:2
14
作者 吴明周 詹望成 +5 位作者 郭耘 王筠松 郭杨龙 龚学庆 王丽 卢冠忠 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第1期184-192,共9页
The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron ... The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,O2 temperature-programmed desorption,and thermogravimetry-differential analysis.The catalytic performance of each of these materials during the selective oxidation of cyclohexane with oxygen in a solvent-free system was subsequently examined.It was found that the MnOx-500 catalyst,calcined at 500 °C,consisted of a Mn2O3 phase in addition to Mn5O8 and Mn3O4 phases and possessed a low surface area.Unlike MnOx-500,the MnOx-400 catalyst prepared at 400 °C was composed solely of Mn3O4 and Mn5O8 and had a higher surface area.The pronounced catalytic activity of this latter material for the oxidation of cyclohexene was determined to result from numerous factors,including a higher concentration of surface adsorbed oxygen,greater quantities of the surface Mn4+ ions that promote oxygen mobility and the extent of O2 adsorption and reducibility on the catalyst.The effects of various reaction conditions on the activity of the MnOx-400 during the oxidation of cyclohexane were also evaluated,such as the reaction temperature,reaction time,and initial oxygen pressure.Following a 4 h reaction at an initial O2 pressure of 0.5 MPa and 140 °C,an 8.0% cyclohexane conversion and 5.0% yield of cyclohexanol and cyclohexanone were achieved over the MnOx-400 catalyst.In contrast,employing MnOx-500 resulted in a 6.1% conversion of cyclohexane and 75% selectivity for cyclohexanol and cyclohexanone.After being recycled through 10 replicate uses,the catalytic activity of the MnOx-400 catalyst was unchanged,demonstrating its good stability. 展开更多
关键词 manganese oxide catalyst Selective oxidation of cyclohexane OXYGEN Calcination temperature Solvent-free reaction
下载PDF
Feasibility of flue-gas desulfurization by manganese oxides 被引量:3
15
作者 叶万奇 李运姣 +2 位作者 孔龙 任苗苗 韩强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期3089-3094,共6页
For the purpose of effective and economic desulfurization of flue-gas, the predominance area diagram of the Mn-S-O system at different temperatures was constructed based on the thermodynamic data obtained from the lit... For the purpose of effective and economic desulfurization of flue-gas, the predominance area diagram of the Mn-S-O system at different temperatures was constructed based on the thermodynamic data obtained from the literatures. It is seen from this figure that flue-gas desulfurization by manganese oxides is feasible from the thermodynamic point of view. Additionally, the most appropriate temperature range for flue-gas desulfurization is between 600 and 800 K, and the reaction is strongly exothermic to maintain the heat balance. The natural manganese ores encompass large tunnels that exhibit large surface areas and highly chemical activity, which can provide a high enough SO2 removing efficiency. From the superposition of the diagrams of Mn-S-O and Fe-S-O systems, it is found that there is a coexistent stability region of MnSO4 and Fe2O3, which provides the possibility of desulfurization by selective sulfation without ferric sulfate forming. A multi-stage desulfurization system has been discussed briefly. 展开更多
关键词 predominance area diagram DESULFURIZATION manganese oxides dry FGD processes
下载PDF
Morphology and Crystallinity-controlled Synthesis of Manganese Cobalt Oxide/Manganese Dioxides Hierarchical Nanostructures for High-Performance Supercapacitors 被引量:3
16
作者 Fei Li Gang Li +5 位作者 Hao Chen Jia Qi Jia Fan Dong Yao Bo Hu Zheng Guo Shang 张育新 《功能材料信息》 2015年第4期17-32,共16页
We demonstrate a novel preparative strategy for the well-controlled MnCo_2O_(4.5)@MnO_2 hierarchical nanostructures.Bothδ-MnO_2 nanosheets andα-MnO_2 nanorods can uniformly decorate the surface of MnCo_2O_(4.5)nanow... We demonstrate a novel preparative strategy for the well-controlled MnCo_2O_(4.5)@MnO_2 hierarchical nanostructures.Bothδ-MnO_2 nanosheets andα-MnO_2 nanorods can uniformly decorate the surface of MnCo_2O_(4.5)nanowires to form core-shell heterostructures.Detailed electrochemical characterization reveals that MnCo_2O_(4.5)@δ-MnO_2 pattern exhibits not only high specific capacitance of 357.5 F g^(-1)at a scan rate of 0.5 A g^(-1),but also good cycle stability(97%capacitance retention after 1000 cycles at a scan rate of 5 A g^(-1)),which make it have a promising application as a supercapacitor electrode material. 展开更多
关键词 MNO2 manganese cobalt oxide Chemical synthesis CORE-SHELL nanostructures SUPERCAPACITOR
下载PDF
Factors Affecting Cr(Ⅲ) Oxidation by Manganese Oxides 被引量:5
17
作者 CHEN YINGXU CHEN YIYI +2 位作者 LIN QI HU ZIQIANG HU HONG and WU JIANYANG(Dept. of Environ. Sci., Zhejiang Agricultural Univereity, Hangzhou, 310029 (China)) 《Pedosphere》 SCIE CAS CSCD 1997年第2期185-192,共8页
The high oxidation ability of manganese oxides or soils was used to study effects of pH and coatingon Cr(Ⅲ) oxidation. The results indicated that Cr(Ⅲ) oxidation peaked in pH 4.0-6.5. The amount andrate of Cr(Ⅲ) be... The high oxidation ability of manganese oxides or soils was used to study effects of pH and coatingon Cr(Ⅲ) oxidation. The results indicated that Cr(Ⅲ) oxidation peaked in pH 4.0-6.5. The amount andrate of Cr(Ⅲ) being oxidized by uncoated δ-MnO2 were larger than those by Fe oxide- or CaCO3-coatedone. Inorganic Cr(Ⅲ) was more easi1y oxidized by MnO2 than organic complex Cr(Ⅲ) due to differentsurface affinities. Precipitated Cr(Ⅲ) and adsorbed Cr(Ⅲ) might be transferred onto MnO2 surface andthen oxidized to Cr(VI). 展开更多
关键词 CHROMIUM environmental chemistry kinetics manganese oxides oxidATION
下载PDF
Facile synthesis of hierarchically structured manganese oxides as anode for lithium-ion batteries 被引量:4
18
作者 DENG Zhao HUANG Xing +2 位作者 ZHAO Xu CHENG Hua WANG Hong-en 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1481-1492,共12页
Developing high-performance lithium ion batteries(LIBs)using manganese oxides as anodes is attractive due to their high theoretical capacity and abundant resources.Herein,we report a facile synthesis of hierarchical s... Developing high-performance lithium ion batteries(LIBs)using manganese oxides as anodes is attractive due to their high theoretical capacity and abundant resources.Herein,we report a facile synthesis of hierarchical spherical MnO2 containing coherent amorphous/crystalline domained by a simple yet effective redox precipitation reaction at room temperature.Further,flower-like CoMn2O4 constructed by single-crystalline spinel nanosheets has been fabricated using MnO2 as precursor.This mild methodology avoids undesired particle aggregation and loss of active surface area in conventional hydrothermal or solid-state processes.Moreover,both MnO2 and CoMn2O4 nanosheets manifest superior lithium-ion storage properties,rendering them promising applications in LIBs and other energy-related fields. 展开更多
关键词 manganese oxides nanostructures anode materials lithium ion batteries ELECTROCHEMISTRY
下载PDF
Roles of Ceria on Copper and Manganese Oxides Catalyst——Adsorption of NO and CO 被引量:1
19
作者 卢冠忠 汪仁 《Journal of Rare Earths》 SCIE EI CAS CSCD 1993年第4期263-268,共6页
A microreactor system and TPD techniques were used to study the reaction kinetics of the CO+ NO reaction and the adsorption of CO,NO,CO_2 and N_2O over Cu-Mn-O(Ⅰ)and Cu-Mn-Ce-O(Ⅱ) catalysts.The results show that the... A microreactor system and TPD techniques were used to study the reaction kinetics of the CO+ NO reaction and the adsorption of CO,NO,CO_2 and N_2O over Cu-Mn-O(Ⅰ)and Cu-Mn-Ce-O(Ⅱ) catalysts.The results show that the catalytic activity of(Ⅱ)is higher than that of(Ⅰ)for the CO+NO reac- tion,and the higher the conversion of NO,the larger was the activity difference between(Ⅰ)and(Ⅱ).For (Ⅰ)the rate of NO elimination is dependent on the partial pressures of NO,CO,CO_2 with the kinetics or- ders of 0.48,0.56,0.08,respectively.The TPD study shows that the presence of Ce in(Ⅱ)may promote the adsorption of NO,CO on the surface,i.e.an increase of the coverage θ_(NO),θ_(CO),which result in a decrease of the hindrance of the reaction products.For CO_2 and N_2O the situation is in the opposite,the presence of Ce makes the θ_(CO)_2)and θ_(NO)on(Ⅱ)decrease,which weakens the inhibition of CO_2 for the reaction. 展开更多
关键词 Cerium oxide Copper and manganese oxides CATALYSIS Carbon monoxide Nitrogen oxide Kinetics TPD
下载PDF
Ethyl and butyl acetate oxidation over manganese oxides 被引量:2
20
作者 Olívia Salomé G.P.Soares Raquel P.Rocha +2 位作者 Jose J.M.Orfao Manuel F.R.Pereira José L.Figueiredo 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第1期27-36,共10页
Mangenese oxides were synthesized using two new methods,a novel solvent‐free reaction and a reflux technique,that produced cryptomelane‐type products(K‐OMS‐2).Oxides were also synthesized using conventional method... Mangenese oxides were synthesized using two new methods,a novel solvent‐free reaction and a reflux technique,that produced cryptomelane‐type products(K‐OMS‐2).Oxides were also synthesized using conventional methods and all specimens were applied to the oxidation of ethyl acetate and butyl acetate,acting as models for the volatile organic compounds found in industrial emissions.The catalysts were also characterized using N2adsorption,X‐ray diffraction,scanning electron microscopy,temperature programmed reduction and X‐ray photoelectron spectroscopy.Each of the manganese oxides was found to be very active during the oxidation of both esters to CO2,and the synthesis methodology evidently had a significant impact on catalytic performance.The K‐OMS‐2nanorods synthesized by the solvent‐free method showed higher activity than K‐OMS‐2materials prepared by the reflux technique,and samples with cryptomelane were more active than those prepared by the conventional methods.The catalyst with the highest performance also exhibited good stability and allowed90%conversion of ethyl and butyl acetate to CO2at213and202°C,respectively.Significant differences in the catalyst performance were observed,clearly indicating that K‐OMS‐2nanorods prepared by the solvent‐free reaction were better catalysts for the selected VOC oxidations than the mixtures of manganese oxides traditionally obtained with conventional synthesis methods.The superior performance of the K‐OMS‐2catalysts might be related to the increased average oxidation state of the manganese in these structures.Significant correlations between the catalytic performance and the surface chemical properties were also identified,hig-hlighting the K‐OMS‐2properties associated with the enhanced catalytic performance of the materials.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved. 展开更多
关键词 Volatile organic compound Ethyl acetate Butyl acetate manganese oxide Catalytic oxidation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部