This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being dev...This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being developed for use in producing structural or biomedical devices.Specifically,this study focused on achieving a near-dense microstructure with WE43 Mg alloy while substantially reducing the duration of sintering post-processing after BJAM part rendering.The optimal process resulted in microstructure with 2.5%porosity and significantly reduced sintering time.The improved sintering can be explained by the presence of Y_(2)O_(3)and Nd_(2)O_(3)oxide layers,which form spontaneously on the surface of WE43 powder used in BJAM.These layers appear to be crucial in preventing shape distortion of the resulting samples and in enabling the development of sintering necks,particularly under sintering conditions exceeding the liquidus temperature of WE43 alloy.Sintered WE43 specimens rendered by BJAM achieved significant improvement in both corrosion resistance and mechanical properties through reduced porosity levels related to the sintering time.展开更多
Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the co...Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing.展开更多
W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a po...W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a powder metallurgy process combining mechanical alloying and spark plasma sintering (SPS). The SPSed samples contained two phases, in which the matrix is RHEA with a body-centered cubic structure, while the oxide phase was most likely Ta2VO6through a combined analysis of X-ray diffraction (XRD),energy-dispersive spectroscopy (EDS), and selected area electron diffraction (SAED). The higher oxygen affinity of Ta and V may explain the preferential formation of their oxide phases based on thermodynamic calculations. Electron backscatter diffraction (EBSD) revealed an average grain size of 6.2μm. WTaVCr RHEA showed a peak compressive strength of 2997 MPa at room temperature and much higher micro-and nano-hardness than W and other W-based RHEAs in the literature. Their high Rockwell hardness can be retained to at least 1000°C.展开更多
Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ...Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.展开更多
Fe-2Cu-2Ni-1Mo-0.8C (wt pct) elemental mixed powders were rapidly sintered within 6 min by spark plasma sintering, and the effects of sintering parameters on the densification degree and performance of the assintere...Fe-2Cu-2Ni-1Mo-0.8C (wt pct) elemental mixed powders were rapidly sintered within 6 min by spark plasma sintering, and the effects of sintering parameters on the densification degree and performance of the assintered materials were investigated. Results showed that when a proper combination of pulse electric current and constant electric current was employed for sintering, the density and bend strength of the as-sintered material reached the maxima, being 7.61×10^3 kg/m^3 and 1540 MPa, respectively. Its corresponding fracture morphology was characterized as the mix of ductile, intergranular and cleavage fractures.展开更多
TiAl alloy bulk samples with the composition of Ti-45Al-5.5(Cr,Nb,B,Ta) (mole fraction, %) were prepared by high energy mechanical milling and spark plasma sintering (SPS) and then heat treatment. The microstructure a...TiAl alloy bulk samples with the composition of Ti-45Al-5.5(Cr,Nb,B,Ta) (mole fraction, %) were prepared by high energy mechanical milling and spark plasma sintering (SPS) and then heat treatment. The microstructure and mechanical properties after heat treatment of TiAl alloy prepared by SPS at different temperatures were studied. The results showed that the morphology of high energy mechanically milled powder was irregular and the average grain size was about decades micrometers. X-ray diffraction analysis showed that the mechanically milled powder was composed of two phases of TiAl and Ti3Al. The main phase of TiAl and few phases of Ti3Al and TiB2 were observed in the SPS bulk samples of Ti-45Al-5.5(Cr,Nb,B,Ta) alloy. For samples sintered at 900 °C and 1000 °C, the microstructure was duplex structure with some fine equiaxed gamma grains and thin needly TiB2 phases. With the SPS temperature increasing from 900 °C to 1000 °C, the micro-hardness was changed little, the compression strength increased from 1812 MPa to 2275 MPa and the compression ratio increased from 22.66% to 25.59%. The fractography results showed that the compression fracture transform of the SPS Ti-45Al-5.5(Cr,Nb,B,Ta) alloy was rgranular rupture.展开更多
NiTi shape memory alloys(SMAs) was developed using the spark-plasma sintering(SPS) process with different average particle size(45 μm and 10 μm) under various temperature. The influence of particle size and temperat...NiTi shape memory alloys(SMAs) was developed using the spark-plasma sintering(SPS) process with different average particle size(45 μm and 10 μm) under various temperature. The influence of particle size and temperature on the density, microstructure, and corrosion behavior of the NiTi in simulated body fluid was examined. The porosity decreased with increasing sintering temperature and decreasing particle size, which resulted in an increase in density of the alloy. Increasing the sintering temperature led to the formation of Ni-and Ti-rich intermetallic such as Ni3Ti and NiTi2. The formation of these secondary phases influenced the corrosion behavior of NiTi by changing its chemical composition. The planar structure of NiTi was transformed into a dendritic structure at 900℃, which resulted in the formation of uniform oxide and phosphate layers on the entire surface. A high corrosion potential and low corrosion current density were achieved with NiTi prepared with 10 μm particles at 900℃, which exhibited superior corrosion resistance.展开更多
Phase structure and electrochemical properties of laser sintered La2MgNi9 alloys were studied. The sintered alloys contained a main phase, LaNi5, and a ternary La-Mg-Ni phase, with a PuNi3 structure and a small amount...Phase structure and electrochemical properties of laser sintered La2MgNi9 alloys were studied. The sintered alloys contained a main phase, LaNi5, and a ternary La-Mg-Ni phase, with a PuNi3 structure and a small amount of LaMgNi4. The ternary La-Mg-Ni phase with a PuNi3 structure had the composition of La1.8Mg1.2Ni9 and La2MgNi9, for alloys laser sintered at 1000 and 1400 W, respectively. Owing to further reactions between LaNi5 and LaMgNi4, the amount of the PuNi3 phase increased for alloys sintered at 1400 W. Both alloys had good activation property (three charge/discharge cycles). The discharge capacities of the sintered alloys were 321.8 and 344.8 mAh/g, respectively. Compared with the alloy laser sintered at 1000 W, the poor cyclic stability of the alloy sintered at 1400 W was mainly attributed to the lower corrosion resistance of the La2MgNi9 phase.展开更多
The Mg-Ni hydrogen storage alloys were prepared using the laser sintering technology. The effects of laser sintering power on the phase component and the weight loss of Mg element for the Mg-Ni alloys were investigate...The Mg-Ni hydrogen storage alloys were prepared using the laser sintering technology. The effects of laser sintering power on the phase component and the weight loss of Mg element for the Mg-Ni alloys were investigated. The samples P1, P2 and P3 consisted of five phases: Mg2Ni, MgNi2, Mg, Ni and MgO. The weight loss of Mg element remarkably increased at 1200 W. The addition of extra Mg significantly promoted the reaction between Mg and Ni. Mg2Ni, MgNi2, and a small amount of Ni and MgO phases were present in the samples PM (pestie milling) and BM (ball milling). The sample PM has a homogeneous microstructure, and the contents of Mg2Ni and MgNi2 were approximately consistent with those of the Mg-Ni alloy under the equilibrium conditions. The maximum hydrogen storage capacity of the sample BM was 1.72 wt.% and the sample can be activated easily at 573 K (only 3 activation cycles).展开更多
Although single-pulse lasers are often used in traditional laser-induced breakdown spectroscopy (LIBS) measurements, their measurement outcomes are generally undesirable because of the low sensitivity of carbon in i...Although single-pulse lasers are often used in traditional laser-induced breakdown spectroscopy (LIBS) measurements, their measurement outcomes are generally undesirable because of the low sensitivity of carbon in iron-based alloys. In this article, a double-pulse laser was applied to improve the signal intensity of carbon. Both the inter-pulse delay and the combination of laser wavelengths in double-pulse laser-induced breakdown spectroscopy (DP-LIBS) were optimized in our experiment. At the optimized inter-pulse delay, the combination of a first laser of 532 nm and a second laser of 1,064 nm achieved the highest signal enhancement. The properties of the target also played a role in determining the mass ablation enhancement in DP-LIBS configuration.展开更多
Tungsten heavy alloys(90W-6Ni-4Mn)were prepared through spark plasma sintering(SPS)using micron-sized W,Ni,and Mn powders without ball milling as raw materials.The effects of sintering temperature on the microstructur...Tungsten heavy alloys(90W-6Ni-4Mn)were prepared through spark plasma sintering(SPS)using micron-sized W,Ni,and Mn powders without ball milling as raw materials.The effects of sintering temperature on the microstructure and mechanicalproperties of the90W-6Ni-4Mn alloys were investigated.SPS technology was used to prepare90W-6Ni-4Mn alloys withrelatively high density and excellent comprehensive performance at1150-1250°C for3min.The90W-6Ni-4Mn alloys consistedof the W phase and theγ-(Ni,Mn,and W)binding phase,and the average grain size was less than10μm.The Rockwell hardness andbending strength of alloys first increased and then decreased with increasing sintering temperature.The best comprehensiveperformance was obtained at1200°C,its hardness and bending strength were HRA68.7and1162.72MPa,respectively.展开更多
The microstructures and mechanical properties of an iron-based alloy (Fe-13Cr-3W-0.4Ti-0.25Y-0.30O) prepared by mechanical alloying were investigated with scanning electron microscope,optical microscope,X-ray diffract...The microstructures and mechanical properties of an iron-based alloy (Fe-13Cr-3W-0.4Ti-0.25Y-0.30O) prepared by mechanical alloying were investigated with scanning electron microscope,optical microscope,X-ray diffractometer and hardness tester.The results show that the particle size does not decrease with milling time because serious welding occurs at 144 h.The density of the alloy sintered at 1 523 K is affected by the particle size of the powder.Finer particles lead to a high sintered density,while the bulk density by using particles milled for 144 h is as low as 70%.In the microstructures of the annealed alloy,large elongated particles and fine equiaxed grains can be detected.The elongated particle zone has a higher microhardness than the equiaxed grain area in the annealed alloys due to the larger residual strain and higher density of the precipitated phase.展开更多
The effect of copper and rare-earth elements on corrosion behavior of high silicon iron-based alloys in nitric acid was studied by means of static and loading current corrosion experiments.The anodic polarization curv...The effect of copper and rare-earth elements on corrosion behavior of high silicon iron-based alloys in nitric acid was studied by means of static and loading current corrosion experiments.The anodic polarization curve was also made to discuss the corrosion mechanism.The examination on alloy microstructure and SEM corrosion pattern showed that when silicon content reached 14.5%,the Fe3Si phase appeared and the primary structure of the iron-base alloy was ferrite.When adding 4.57% copper in the iron alloy,its corrosion resistance in static diluted sulfuric acid was improved while its corrosion resistance and electrochemical corrosion properties in the nitric acid were decreased.In contrast,the addition of rare earth elements could improve the corrosion properties in all above conditions including in static diluted sulfuric acid and in nitric acid.展开更多
Ti-Mo alloys with various Mo contents from 6wt% to 14wt% were processed by spark plasma sintering based on elemental pow- ders. The influence of sintering temperature and Mo content on the microstructure and mechanica...Ti-Mo alloys with various Mo contents from 6wt% to 14wt% were processed by spark plasma sintering based on elemental pow- ders. The influence of sintering temperature and Mo content on the microstructure and mechanical properties of the resulting alloys were investigated. For each Mo concentration, the optimum sintering temperature was determined, resulting in a fully dense and uniform microstructure of the alloy. The optimized sintering temperature gradually increases in the range of 1100-1300℃ with the increase in Mo content. The microstructure of the Ti-(6-12)Mo ahoy consists of acicular α phase surrounded by equiaxed grains of 13 phase, while the Ti-14Mo al- loy only contains single 13 phase. A small amount of fine α lath precipitated from 13 phase contributes to the improvement in strength and hardness of the alloys. Under the sintering condition at 1250℃, the Ti-12Mo alloy is found to possess superior mechanical properties with the Vickers hardness of Hv 472, the compressive yield strength of 2182 MPa, the compression rate of 32.7%, and the elastic modulus of 72.1 GPa. These results demonstrate that Ti-Mo alloys fabricated via spark plasma sintering are indeed a perspective candidate alloy for dental applications.展开更多
The properties and microstructure of microwave and conventional sintered Fe-2Cu-0.6C powder metallurgy (PM) alloys were investigated. The experimental results show that microwave sintered alloy has the better proper...The properties and microstructure of microwave and conventional sintered Fe-2Cu-0.6C powder metallurgy (PM) alloys were investigated. The experimental results show that microwave sintered alloy has the better properties (sintered density 7.20 g/cm3, Rockwell hardness 75 HRB, tensile strength 413.90 MPa and elongation 6.0%), compared with the conventional sintered counterpart. Detailed analyses by using optical microscopy and scanning electron microscopy (SEM) reveal that microwave sintered sample has finer microstructure with small, rounded and uniformly distributed pores, and also demonstrate the presence of more flaky and granular pearlite in the mi- crowave sintered body, both of which account for the property improvement. SEM images on the fracture morphology indicate that a mixed mode containing ductile and brittle fracture is presented in microwave sintered alloy, in contrast with the brittle fracture in conventional sintered counterpart.展开更多
In this study, Cu was added as the third additive to lower the sintering temperature of W-Ni-Fe alloy. By adding 2 wt pct Cu, a dense 93W-3.5Ni-l.5Fe-2.0Cu tungsten alloy was obtained by hot-pressing at a low temperat...In this study, Cu was added as the third additive to lower the sintering temperature of W-Ni-Fe alloy. By adding 2 wt pct Cu, a dense 93W-3.5Ni-l.5Fe-2.0Cu tungsten alloy was obtained by hot-pressing at a low temperature of 1573 K which is a process of liquid-phase sintering. As a result, the morphology of W-Ni-Fe alloy changed obviously after the addition of Cu and the alloy had-higher relative density and rupture strength. The mechanism of the densification of W-Ni-Fe-Cu alloy at the low temperature.was then mainly investigated. It was found that, part sintering activators Ni and Fe could exist in liquid form at 1573 K due to the addition of Cu, which made it easy for Ni and Fe to dissolve W and thus the full densification of W-Ni-Fe-Cu alloy at the low temperature was realized.展开更多
W-25Cu alloys were microwave sintered in a 2.45 GHz multimode applicator.The densification,microstructure and their dependence on sintering mode and Fe addition were investigated in detail.Owing to the volumetric heat...W-25Cu alloys were microwave sintered in a 2.45 GHz multimode applicator.The densification,microstructure and their dependence on sintering mode and Fe addition were investigated in detail.Owing to the volumetric heating intrinsic in microwave processing,a microstructure with larger W grain size in center regions was observed as against larger grain size in edge regions for conventional sintering.Microwave sintering demonstrates its intrinsic advantages such as rapid heating rate,densification enhancement and microstructural homogeneity;but it undesirably promotes W grain growth.Under microwave sintering,the role of Fe addition on compact consolidation is not so substantial as under conventional sintering.Moreover Fe degrades the microstructural quality,generating worse uniformity and coarser W grains.展开更多
In order to adapt to the high temperature and heavy load process environment of large forgings,a novel die with"fist-like"structure is designed.The“fist-like”die mainly consists of“skin”layer,“bone”lay...In order to adapt to the high temperature and heavy load process environment of large forgings,a novel die with"fist-like"structure is designed.The“fist-like”die mainly consists of“skin”layer,“bone”layer and matrix.To obtain the material with good supportability and good bonding strength with the“skin”layer,iron-based alloys RMD248 and CN72 were selected to make the"bone"layer,and the properties were compared.In this paper,the"bone"layer and the"skin"layer(CHN327)were surfaced on 5CrNiMo matrix by wire arc additive manufacture(WAAM).Then,cyclic heating to 500℃and thermal compression with a maximum deformation of 30%were adapted to test the high temperature mechanical properties.The microstructure changes before and after thermal cycles and compressions were observed by optical microscopy(OM),X-ray diffraction(XRD),energy dispersive spectrometer(EDS)and scanning electron microscopy(SEM).The results show that CN72 has more carbides than RMD248 at the joint surface,which makes it easy to form brittle fracture at the joint.Mechanical properties were tested by using microhardness machine.Meanwhile,hot tensile tests were performed to study bonding strength between the“skin”layer and the“bone”layer.The results show that the RMD248 has stable microhardness distribution while the microhardness of CN72 decreases with the distance from the interface.And the ultimate tensile strength between CN72 and CHN327 is higher than RMD248 in the temperature range of 400-450℃.It can be inferred that CN72 has higher inter-layer wear resistance and RMD248 has more stable high temperature performance.展开更多
The properties of FeMnSiCrNi shape memory alloy were investigated. The results show that the best shape memory effect of Fe14Mn6Si9Cr5Ni alloy is 85%. The transformation amount of the ε→γ transformation is not comp...The properties of FeMnSiCrNi shape memory alloy were investigated. The results show that the best shape memory effect of Fe14Mn6Si9Cr5Ni alloy is 85%. The transformation amount of the ε→γ transformation is not complete after heating the alloy to 1000 K, As and Af points drop with increased transformation enthalpy (ΔH γ→ε ) by thermal cycling and increased prestrain. The alloy shows also good creep and stress relaxation resistance. In addition, the alloy having a tensile force of 20 kN and a sealing pressure of 6 MPa can satisfy requirements for possible industrial application on pipe joints.展开更多
The glass formation was intensively studied for Fe-based alloys. Parameters defining kinetics and thermodynamic behavior of crystallization were calculated using calorimetric measurements and physical properties of co...The glass formation was intensively studied for Fe-based alloys. Parameters defining kinetics and thermodynamic behavior of crystallization were calculated using calorimetric measurements and physical properties of constituent elements. It is found that the critical cooling rate Rc estimated by combining kinetic and thermodynamic parameters highly correlates with measured Rc found in literatures with correlation coefficient R2=0.944, and alloy compositions with high melting enthalpy AHm can easily form glass even without high undercooling and high value of the ,β-parameter of Tumbull's theory, revealing that the glass formation in this group of alloys is mostly controlled by growth limitation. This combination of kinetic and thermodynamic parameters can be used to determine alloy composition with good glass forming ability in Fe-based alloys just using physical properties of alloying elements and calorimetric measurements.展开更多
文摘This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being developed for use in producing structural or biomedical devices.Specifically,this study focused on achieving a near-dense microstructure with WE43 Mg alloy while substantially reducing the duration of sintering post-processing after BJAM part rendering.The optimal process resulted in microstructure with 2.5%porosity and significantly reduced sintering time.The improved sintering can be explained by the presence of Y_(2)O_(3)and Nd_(2)O_(3)oxide layers,which form spontaneously on the surface of WE43 powder used in BJAM.These layers appear to be crucial in preventing shape distortion of the resulting samples and in enabling the development of sintering necks,particularly under sintering conditions exceeding the liquidus temperature of WE43 alloy.Sintered WE43 specimens rendered by BJAM achieved significant improvement in both corrosion resistance and mechanical properties through reduced porosity levels related to the sintering time.
文摘Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing.
基金supported by the National Science Foundation under Grant No.CMMI-1762190The research was performed in part in the Nebraska Nanoscale Facility:National Nanotechnology Coordinated Infrastructure and the Nebraska Center for Materials and Nanoscience (and/or NERCF),which are supported by the National Science Foundation under Award ECCS:2025298+1 种基金the Nebraska Research Initiativesupported by the U.S.Department of Energy,Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517 as part of a Nuclear Science User Facilities experiment。
文摘W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a powder metallurgy process combining mechanical alloying and spark plasma sintering (SPS). The SPSed samples contained two phases, in which the matrix is RHEA with a body-centered cubic structure, while the oxide phase was most likely Ta2VO6through a combined analysis of X-ray diffraction (XRD),energy-dispersive spectroscopy (EDS), and selected area electron diffraction (SAED). The higher oxygen affinity of Ta and V may explain the preferential formation of their oxide phases based on thermodynamic calculations. Electron backscatter diffraction (EBSD) revealed an average grain size of 6.2μm. WTaVCr RHEA showed a peak compressive strength of 2997 MPa at room temperature and much higher micro-and nano-hardness than W and other W-based RHEAs in the literature. Their high Rockwell hardness can be retained to at least 1000°C.
基金supported by Thailand Science Research and Innovation Fund Chulalongkorn University,Thailand(IND66210014)。
文摘Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.
文摘Fe-2Cu-2Ni-1Mo-0.8C (wt pct) elemental mixed powders were rapidly sintered within 6 min by spark plasma sintering, and the effects of sintering parameters on the densification degree and performance of the assintered materials were investigated. Results showed that when a proper combination of pulse electric current and constant electric current was employed for sintering, the density and bend strength of the as-sintered material reached the maxima, being 7.61×10^3 kg/m^3 and 1540 MPa, respectively. Its corresponding fracture morphology was characterized as the mix of ductile, intergranular and cleavage fractures.
基金Project (51001040) supported by the National Natural Science Foundation of ChinaProject (HITQNJS.2009.022) supported by Development Program for Outstanding Young Teachers in Harbin Institute of TechnologyProject (2012RFQXG109) supported by the Youth Science and Technology Innovation Talents
文摘TiAl alloy bulk samples with the composition of Ti-45Al-5.5(Cr,Nb,B,Ta) (mole fraction, %) were prepared by high energy mechanical milling and spark plasma sintering (SPS) and then heat treatment. The microstructure and mechanical properties after heat treatment of TiAl alloy prepared by SPS at different temperatures were studied. The results showed that the morphology of high energy mechanically milled powder was irregular and the average grain size was about decades micrometers. X-ray diffraction analysis showed that the mechanically milled powder was composed of two phases of TiAl and Ti3Al. The main phase of TiAl and few phases of Ti3Al and TiB2 were observed in the SPS bulk samples of Ti-45Al-5.5(Cr,Nb,B,Ta) alloy. For samples sintered at 900 °C and 1000 °C, the microstructure was duplex structure with some fine equiaxed gamma grains and thin needly TiB2 phases. With the SPS temperature increasing from 900 °C to 1000 °C, the micro-hardness was changed little, the compression strength increased from 1812 MPa to 2275 MPa and the compression ratio increased from 22.66% to 25.59%. The fractography results showed that the compression fracture transform of the SPS Ti-45Al-5.5(Cr,Nb,B,Ta) alloy was rgranular rupture.
文摘NiTi shape memory alloys(SMAs) was developed using the spark-plasma sintering(SPS) process with different average particle size(45 μm and 10 μm) under various temperature. The influence of particle size and temperature on the density, microstructure, and corrosion behavior of the NiTi in simulated body fluid was examined. The porosity decreased with increasing sintering temperature and decreasing particle size, which resulted in an increase in density of the alloy. Increasing the sintering temperature led to the formation of Ni-and Ti-rich intermetallic such as Ni3Ti and NiTi2. The formation of these secondary phases influenced the corrosion behavior of NiTi by changing its chemical composition. The planar structure of NiTi was transformed into a dendritic structure at 900℃, which resulted in the formation of uniform oxide and phosphate layers on the entire surface. A high corrosion potential and low corrosion current density were achieved with NiTi prepared with 10 μm particles at 900℃, which exhibited superior corrosion resistance.
基金the Natural Science Foundation of Anhui Province (070414159)the Science Research Foundation for the Candidates of Academic Leaders of Anhui Proince
文摘Phase structure and electrochemical properties of laser sintered La2MgNi9 alloys were studied. The sintered alloys contained a main phase, LaNi5, and a ternary La-Mg-Ni phase, with a PuNi3 structure and a small amount of LaMgNi4. The ternary La-Mg-Ni phase with a PuNi3 structure had the composition of La1.8Mg1.2Ni9 and La2MgNi9, for alloys laser sintered at 1000 and 1400 W, respectively. Owing to further reactions between LaNi5 and LaMgNi4, the amount of the PuNi3 phase increased for alloys sintered at 1400 W. Both alloys had good activation property (three charge/discharge cycles). The discharge capacities of the sintered alloys were 321.8 and 344.8 mAh/g, respectively. Compared with the alloy laser sintered at 1000 W, the poor cyclic stability of the alloy sintered at 1400 W was mainly attributed to the lower corrosion resistance of the La2MgNi9 phase.
基金the Natural Science Foundation of Anhui Province, China (No. 070414159)
文摘The Mg-Ni hydrogen storage alloys were prepared using the laser sintering technology. The effects of laser sintering power on the phase component and the weight loss of Mg element for the Mg-Ni alloys were investigated. The samples P1, P2 and P3 consisted of five phases: Mg2Ni, MgNi2, Mg, Ni and MgO. The weight loss of Mg element remarkably increased at 1200 W. The addition of extra Mg significantly promoted the reaction between Mg and Ni. Mg2Ni, MgNi2, and a small amount of Ni and MgO phases were present in the samples PM (pestie milling) and BM (ball milling). The sample PM has a homogeneous microstructure, and the contents of Mg2Ni and MgNi2 were approximately consistent with those of the Mg-Ni alloy under the equilibrium conditions. The maximum hydrogen storage capacity of the sample BM was 1.72 wt.% and the sample can be activated easily at 573 K (only 3 activation cycles).
基金supported by National Natural Science Foundation of China(No.51374040)the National Key Scientific Instrument and Equipment Development Project of China(No.2014YQ120351)
文摘Although single-pulse lasers are often used in traditional laser-induced breakdown spectroscopy (LIBS) measurements, their measurement outcomes are generally undesirable because of the low sensitivity of carbon in iron-based alloys. In this article, a double-pulse laser was applied to improve the signal intensity of carbon. Both the inter-pulse delay and the combination of laser wavelengths in double-pulse laser-induced breakdown spectroscopy (DP-LIBS) were optimized in our experiment. At the optimized inter-pulse delay, the combination of a first laser of 532 nm and a second laser of 1,064 nm achieved the highest signal enhancement. The properties of the target also played a role in determining the mass ablation enhancement in DP-LIBS configuration.
基金Projects(51464010,51461014)supported by the National Natural Science Foundation of ChinaProject(20165207)supported by the Natural Science Foundation of Hainan Province,China
文摘Tungsten heavy alloys(90W-6Ni-4Mn)were prepared through spark plasma sintering(SPS)using micron-sized W,Ni,and Mn powders without ball milling as raw materials.The effects of sintering temperature on the microstructure and mechanicalproperties of the90W-6Ni-4Mn alloys were investigated.SPS technology was used to prepare90W-6Ni-4Mn alloys withrelatively high density and excellent comprehensive performance at1150-1250°C for3min.The90W-6Ni-4Mn alloys consistedof the W phase and theγ-(Ni,Mn,and W)binding phase,and the average grain size was less than10μm.The Rockwell hardness andbending strength of alloys first increased and then decreased with increasing sintering temperature.The best comprehensiveperformance was obtained at1200°C,its hardness and bending strength were HRA68.7and1162.72MPa,respectively.
基金Project(50634060) supported by the National Natural Science Foundation of China Project(50721003) supported by the Creative Research Group of National Natural Science Foundation of China
文摘The microstructures and mechanical properties of an iron-based alloy (Fe-13Cr-3W-0.4Ti-0.25Y-0.30O) prepared by mechanical alloying were investigated with scanning electron microscope,optical microscope,X-ray diffractometer and hardness tester.The results show that the particle size does not decrease with milling time because serious welding occurs at 144 h.The density of the alloy sintered at 1 523 K is affected by the particle size of the powder.Finer particles lead to a high sintered density,while the bulk density by using particles milled for 144 h is as low as 70%.In the microstructures of the annealed alloy,large elongated particles and fine equiaxed grains can be detected.The elongated particle zone has a higher microhardness than the equiaxed grain area in the annealed alloys due to the larger residual strain and higher density of the precipitated phase.
文摘The effect of copper and rare-earth elements on corrosion behavior of high silicon iron-based alloys in nitric acid was studied by means of static and loading current corrosion experiments.The anodic polarization curve was also made to discuss the corrosion mechanism.The examination on alloy microstructure and SEM corrosion pattern showed that when silicon content reached 14.5%,the Fe3Si phase appeared and the primary structure of the iron-base alloy was ferrite.When adding 4.57% copper in the iron alloy,its corrosion resistance in static diluted sulfuric acid was improved while its corrosion resistance and electrochemical corrosion properties in the nitric acid were decreased.In contrast,the addition of rare earth elements could improve the corrosion properties in all above conditions including in static diluted sulfuric acid and in nitric acid.
基金financially supported by the State Key Lab of Advanced Metals and Materials,University of Science and Technology Beijing(No.2012Z–10)the National Natural Science Foundation of China(No.51204015)
文摘Ti-Mo alloys with various Mo contents from 6wt% to 14wt% were processed by spark plasma sintering based on elemental pow- ders. The influence of sintering temperature and Mo content on the microstructure and mechanical properties of the resulting alloys were investigated. For each Mo concentration, the optimum sintering temperature was determined, resulting in a fully dense and uniform microstructure of the alloy. The optimized sintering temperature gradually increases in the range of 1100-1300℃ with the increase in Mo content. The microstructure of the Ti-(6-12)Mo ahoy consists of acicular α phase surrounded by equiaxed grains of 13 phase, while the Ti-14Mo al- loy only contains single 13 phase. A small amount of fine α lath precipitated from 13 phase contributes to the improvement in strength and hardness of the alloys. Under the sintering condition at 1250℃, the Ti-12Mo alloy is found to possess superior mechanical properties with the Vickers hardness of Hv 472, the compressive yield strength of 2182 MPa, the compression rate of 32.7%, and the elastic modulus of 72.1 GPa. These results demonstrate that Ti-Mo alloys fabricated via spark plasma sintering are indeed a perspective candidate alloy for dental applications.
基金Funded by the National Science and Technology Development Program (No.2004-09ZD)
文摘The properties and microstructure of microwave and conventional sintered Fe-2Cu-0.6C powder metallurgy (PM) alloys were investigated. The experimental results show that microwave sintered alloy has the better properties (sintered density 7.20 g/cm3, Rockwell hardness 75 HRB, tensile strength 413.90 MPa and elongation 6.0%), compared with the conventional sintered counterpart. Detailed analyses by using optical microscopy and scanning electron microscopy (SEM) reveal that microwave sintered sample has finer microstructure with small, rounded and uniformly distributed pores, and also demonstrate the presence of more flaky and granular pearlite in the mi- crowave sintered body, both of which account for the property improvement. SEM images on the fracture morphology indicate that a mixed mode containing ductile and brittle fracture is presented in microwave sintered alloy, in contrast with the brittle fracture in conventional sintered counterpart.
文摘In this study, Cu was added as the third additive to lower the sintering temperature of W-Ni-Fe alloy. By adding 2 wt pct Cu, a dense 93W-3.5Ni-l.5Fe-2.0Cu tungsten alloy was obtained by hot-pressing at a low temperature of 1573 K which is a process of liquid-phase sintering. As a result, the morphology of W-Ni-Fe alloy changed obviously after the addition of Cu and the alloy had-higher relative density and rupture strength. The mechanism of the densification of W-Ni-Fe-Cu alloy at the low temperature.was then mainly investigated. It was found that, part sintering activators Ni and Fe could exist in liquid form at 1573 K due to the addition of Cu, which made it easy for Ni and Fe to dissolve W and thus the full densification of W-Ni-Fe-Cu alloy at the low temperature was realized.
基金Funded by China Postdoctoral Science Foundation (No. 20060400882) Postdoctoral Science Foundation of Central South University
文摘W-25Cu alloys were microwave sintered in a 2.45 GHz multimode applicator.The densification,microstructure and their dependence on sintering mode and Fe addition were investigated in detail.Owing to the volumetric heating intrinsic in microwave processing,a microstructure with larger W grain size in center regions was observed as against larger grain size in edge regions for conventional sintering.Microwave sintering demonstrates its intrinsic advantages such as rapid heating rate,densification enhancement and microstructural homogeneity;but it undesirably promotes W grain growth.Under microwave sintering,the role of Fe addition on compact consolidation is not so substantial as under conventional sintering.Moreover Fe degrades the microstructural quality,generating worse uniformity and coarser W grains.
基金National Natural Science Foundation of China(No.51775068)。
文摘In order to adapt to the high temperature and heavy load process environment of large forgings,a novel die with"fist-like"structure is designed.The“fist-like”die mainly consists of“skin”layer,“bone”layer and matrix.To obtain the material with good supportability and good bonding strength with the“skin”layer,iron-based alloys RMD248 and CN72 were selected to make the"bone"layer,and the properties were compared.In this paper,the"bone"layer and the"skin"layer(CHN327)were surfaced on 5CrNiMo matrix by wire arc additive manufacture(WAAM).Then,cyclic heating to 500℃and thermal compression with a maximum deformation of 30%were adapted to test the high temperature mechanical properties.The microstructure changes before and after thermal cycles and compressions were observed by optical microscopy(OM),X-ray diffraction(XRD),energy dispersive spectrometer(EDS)and scanning electron microscopy(SEM).The results show that CN72 has more carbides than RMD248 at the joint surface,which makes it easy to form brittle fracture at the joint.Mechanical properties were tested by using microhardness machine.Meanwhile,hot tensile tests were performed to study bonding strength between the“skin”layer and the“bone”layer.The results show that the RMD248 has stable microhardness distribution while the microhardness of CN72 decreases with the distance from the interface.And the ultimate tensile strength between CN72 and CHN327 is higher than RMD248 in the temperature range of 400-450℃.It can be inferred that CN72 has higher inter-layer wear resistance and RMD248 has more stable high temperature performance.
文摘The properties of FeMnSiCrNi shape memory alloy were investigated. The results show that the best shape memory effect of Fe14Mn6Si9Cr5Ni alloy is 85%. The transformation amount of the ε→γ transformation is not complete after heating the alloy to 1000 K, As and Af points drop with increased transformation enthalpy (ΔH γ→ε ) by thermal cycling and increased prestrain. The alloy shows also good creep and stress relaxation resistance. In addition, the alloy having a tensile force of 20 kN and a sealing pressure of 6 MPa can satisfy requirements for possible industrial application on pipe joints.
基金Projects(51174094, 51101059) supported by the National Natural Science Foundation of China
文摘The glass formation was intensively studied for Fe-based alloys. Parameters defining kinetics and thermodynamic behavior of crystallization were calculated using calorimetric measurements and physical properties of constituent elements. It is found that the critical cooling rate Rc estimated by combining kinetic and thermodynamic parameters highly correlates with measured Rc found in literatures with correlation coefficient R2=0.944, and alloy compositions with high melting enthalpy AHm can easily form glass even without high undercooling and high value of the ,β-parameter of Tumbull's theory, revealing that the glass formation in this group of alloys is mostly controlled by growth limitation. This combination of kinetic and thermodynamic parameters can be used to determine alloy composition with good glass forming ability in Fe-based alloys just using physical properties of alloying elements and calorimetric measurements.