Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical cap...Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical capacity of 372 mA·h·g^(−1),thus hindering further development toward high-capacity and large-scale applications.Alkaline earth metal iron-based oxides are considered a promising candidate to replace graphite because of their low preparation cost,good thermal stability,superior stability,and high electrochemical performance.Nonetheless,many issues and challenges remain to be addressed.Herein,we systematically summarize the research progress of alkaline earth metal iron-based oxides as LIB anodes.Meanwhile,the material and structural properties,synthesis methods,electrochemical reaction mechanisms,and improvement strategies are introduced.Finally,existing challenges and future research directions are discussed to accelerate their practical application in commercial LIBs.展开更多
Capturing and utilizing CO_(2)from the production process is the key to solving the excessive CO_(2)emission problem. CO_(2)hydrogenation with green hydrogen to produce olefins is an effective and promising way to uti...Capturing and utilizing CO_(2)from the production process is the key to solving the excessive CO_(2)emission problem. CO_(2)hydrogenation with green hydrogen to produce olefins is an effective and promising way to utilize CO_(2)and produce valuable chemicals. The olefins can be produced by CO_(2)hydrogenation through two routes, i.e., CO_(2)-FTS (carbon dioxide Fischer- Tropsch synthesis) and MeOH (methanol-mediated), among which CO_(2)-FTS has significant advantages over MeOH in practical applications due to its relatively high CO_(2)conversion and low energy consumption potentials. However, the CO_(2)-FTS faces challenges of difficult CO_(2)activation and low olefins selectivity. Iron-based catalysts are promising for CO_(2)-FTS due to their dual functionality of catalyzing RWGS and CO-FTS reactions. This review summarizes the recent progress on iron-based catalysts for CO_(2)hydrogenation via the FTS route and analyzes the catalyst optimization from the perspectives of additives, active sites, and reaction mechanisms. Furthermore, we also outline principles and challenges for rational design of high-performance CO_(2)-FTS catalysts.展开更多
Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ...Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.展开更多
Superconducting transition temperature(Tc),as a crucial parameter,exploring its relationship with various macroscopic and microscopic factors helps to understand the mechanism of high-temperature superconductivity fro...Superconducting transition temperature(Tc),as a crucial parameter,exploring its relationship with various macroscopic and microscopic factors helps to understand the mechanism of high-temperature superconductivity from multiple perspectives,aiding in a multidimensional comprehension of high-temperature superconductivity mechanisms.Drawing inspiration from the block-layer structure models of cuprate superconductors,we computationally investigated the interlayer interaction energies in the 12442-type iron-based superconducting materials AkCa_(2)Fe_(4)As_(4)F_(2)(Ak=K,Rb,Cs)systems based on the block-layer model and explored their relationship with Tc.We observed that an increase in interlayer combinative energy leads to a decrease in Tc,while conversely,a decrease in interlayer combination energy results in an increase in Tc.Further,we found that the contribution of the Fe 3d band structure,especially the 3dz2 orbital,to charge transfer is significant.展开更多
[Objective] This study aimed to screen a bacterial strain capable of producing bioflocculant. [Method] A bacterial strain T-11 capable of producing bioflocculant was isolated from activated sludge. Detailed tests on t...[Objective] This study aimed to screen a bacterial strain capable of producing bioflocculant. [Method] A bacterial strain T-11 capable of producing bioflocculant was isolated from activated sludge. Detailed tests on the morphological, physiological and biochemical characteristics were carried out and identification was performed to identify the strain. Finally, the bioflocculant was isolated and purified, and the flocculating activity and chemical characteristics were measured. [Result] It was identified as Serratia plumuthica based on its morphological, physiological and biochemical characteristics. This strain secreted flocculant best in a culture medium which included sucrose and NaNO3. The maximal cell growth was achieved within 10 h and the flocculating activity paralleled to it. It was found to be effective for flocculation of kaolin suspension, when added at a final concentration of 0.7 mg/L, over a range of pHs (2-7), and temperature (approximately 30-80 ℃). Chemical analysis indicated that the bioflocculant was an acidic polysaccharide consisting of glucose, glucuronic acid and galactose, talose and altrose. Infrared spectrum analysis also revealed typical characteristics of polysaccharides. [Conclusion] The biofloccu- lants produced by strain T-11 can greatly improve the ability of activated sludge to settle.展开更多
The flocculating activity of a novel bioflocculant MMF1 produced by multiple-microorganism consortia MM1 was investigated. MM1 was composed of strain BAFRT4 identified as Staphylococcus sp. and strain CYGS1 identified...The flocculating activity of a novel bioflocculant MMF1 produced by multiple-microorganism consortia MM1 was investigated. MM1 was composed of strain BAFRT4 identified as Staphylococcus sp. and strain CYGS1 identified as Pseudomonas sp. The flocculating activity of MMF1 isolated from the screening medium was 82.9%, which is remarkably higher than that of the bioflocculant produced by either of the strains under the same condition. Brewery wastewater was also used as the carbon source for MM1, and the cost-effective production medium for MM1 mainly comprised 1.0 L brewery water (chemical oxygen demand (COD) 5000 mg/L), 0.5 g/L urea, 0.5 g/L yeast extract, and 0.2 g/L (NH4)2SO4. The optimal conditions for the production of MMF1 was inoculum size 2%, initial pH 6.0, cultivating temperature 30℃, and shaking speed 160 r/min, under which the flocculating activity of the MMF1 reached 96.8%. Fifteen grams of purified bioflocculant could be recovered from 1.0 L of fermentation broth. MMF1 was identified as a macromolecular substance containing both protein and polysaccharide. It showed good flocculating performance in treating indigotin printing and dyeing wastewater, and the maximal removal efficiencies of COD and chroma were 79.2% and 86.5%, respectively.展开更多
Objective To study the characteristics of a bioflocculant named MBF7 produced by Penicillum strain HHE-P7 and the effects of cultivation conditions on bioflocculant production. Methods The chemical group in the bioflo...Objective To study the characteristics of a bioflocculant named MBF7 produced by Penicillum strain HHE-P7 and the effects of cultivation conditions on bioflocculant production. Methods The chemical group in the bioflocculant molecules was shown by Fourier transform infrared (FTIR) spectra, and the average molecular weight of MBF7 was estimated by gel permeation chromatography. The effects of medium components on bioflocculant production and flocculating activity were studied. Results Phospho-, amino-, hydroxyl, and carboxyl groups were the major fractions of MBF7, and the molecule weight was about 3.0 × 10^5 Da. In addition, the carbon and nitrogen sources favorable for the bioflocculant production were glucose and yeast extract respectively. When the initial pH of the medium was adjusted to 5.0, high flocculant efficiency could be achieved. Conclusion The bioflocculant MBF7 is a new macromolecule with high flocculating efficiency for Kaolin suspension, and could be produced under appropriate culture conditions.展开更多
Screening of microorganisms producing flocculating substances was carried out. A strain secreting a large amount of bioflocculant was isolated from wastewater samples collected from the Little Moon River in Beijing. B...Screening of microorganisms producing flocculating substances was carried out. A strain secreting a large amount of bioflocculant was isolated from wastewater samples collected from the Little Moon River in Beijing. Based on the morphological properties and 16S rDNA sequence analysis, the isolate (designated W31) was classified as Vagococcus sp. A bioflocculant (named MBFW31) produced by W31 was extracted from the culture broth by ethanol precipitation and purified by gel chroma-tography. MBFW31 was heat-stable and had strong flocculating activity in a wide range of pH with relatively low dosage re-quirement. MBFW31 was identified as a polysaccharide with molecular weight over 2×106. It contained neutral sugar and uronic acid as its major and minor components, respectively. Infrared spectra showed the presence of hydroxyl, carboxyl and methoxyl group in its molecules. The present results suggested that MBFW31 had potential application in wastewater treatment.展开更多
The effect of pH of the fermentation medium on cell growth and the production of a novel bioflocculant(named REA-11) by Corynebacterium glutamicum CCTCC M201005 were investigated. The maximum biomass(2.23 g/L) and fl...The effect of pH of the fermentation medium on cell growth and the production of a novel bioflocculant(named REA-11) by Corynebacterium glutamicum CCTCC M201005 were investigated. The maximum biomass(2.23 g/L) and flocculating activity(142.2 U/mL) were simultaneously obtained at the 14th hour when the pH value of the culture medium was maintained at 7.0 during the whole fermentation process. The production of REA-11 kept on a trend of increase till the later phase of fermentation process, which resulted in the ultimate flocculating activity of the culture broth to enhance to nearly 100 U/mL at pH 6.0. A two-stage pH control mode was adopted in REA-11 production in which the pH value of the culture medium was controlled at 7.0 during the first 14 h, then decreased to 6.0 that was maintained until the end of the fermentation process. With the two-stage pH control mode, the maximum flocculating activity reached 178.8 U/mL which was 30% higher than that obtained under the condition of pH 7.0 and the biomass enhanced about 15%. Compared with the fermentation process without pH control, REA-11 production and cell growth via the two-stage pH control mode increased 80% and 25%, respectively.展开更多
We studied how bioflocculants,produced by white-rot fungi,affect flocculation in slime water.Based on a test in an orthogonal design,flocculation conditions were optimized.The results show that flocculation activity i...We studied how bioflocculants,produced by white-rot fungi,affect flocculation in slime water.Based on a test in an orthogonal design,flocculation conditions were optimized.The results show that flocculation activity is at its highest when the following conditions are met:slime water concentration 27.42 g/L;coagulant aid(CaCl_2) mass concentration 5.0 g/L;two-segment stirrings:the first at a stirring speed of 60 r/min for 180 s and the second 180 r/min for 60 s;a pH of 11 and a flocculant concentration of 15 mL/L.The flocculation activity can be up to 98.71%of bioflocculants at the time.Further experiments indicate that most of the flocculation active material is found outside the mycelium cells.This is the extracellular secretion produced by mycelium cells during the fermentation process.This flocculant has strong thermal stability.Many kinds of cations have a flocculation function to assist bioflocculants.This aid-flocculation effect of the divalent cation Ca^(2+) is obvious in the bioflocculant produced by the white-rot fungus.Therefore,this is of great value when applied to control engineering in the battle against water pollution.展开更多
Screening of bioflocculant-producing microorganisms was carded out. A strain that secreted excellent bioflocculant was isolated from municipal sewage using the spread plate technique, identified as Klebsiella sp. by t...Screening of bioflocculant-producing microorganisms was carded out. A strain that secreted excellent bioflocculant was isolated from municipal sewage using the spread plate technique, identified as Klebsiella sp. by the analytical profile index (API) identification system, and named A9. Several important factors that had an effect on A9's bioflocculant-producing and flocculating activity were studied. A total of 4 g/L Kaolin suspension was used to measure the flocculating activity of the bioflocculant from A9. It was found that maltose and urea were Ag's best carbon and nitrogen sources, respectively, and the flocculating activity of the flocculating agent from A9 was markedly increased by the addition of trivalent cations such as Fe^3+ and Al^3+; furthermore, the bioflocculant produced by A9 was most effective when the pH value was 6.0.展开更多
To investigate the application of compound bioflocculant (CBF) in drinking water treatment at pilot plant, CBF and polymerized aluminium ferrum chloride (PAFC) coagulant were used to treat raw water taken from Lon...To investigate the application of compound bioflocculant (CBF) in drinking water treatment at pilot plant, CBF and polymerized aluminium ferrum chloride (PAFC) coagulant were used to treat raw water taken from Longhupao Reservoir in Heilongjiang Province for the removal of turbidity, COl), UV254 and residual Al. Coagulation test shows that the coagulation enhanced by CBF and PAFC exhibits more effective performance than that enhanced by the individual of them, and the total combination dosage is lower than that of the individual. The residual Al from PAFC can be removed efficiently by CBF. The removal efficiency of turbidity reaches 76.6% by combining CBF of 2 mg/L and PAFC of 15 mg/L, COl) is decreased from 3.80 mg/L to 1.62 mg/ L, and the concentration of residual Al is only 0. 033 mg/L in the product water. It can be speculated that adsorption-bridging and sweep-coagulation processes are predominant in the flocculation process by the combination of CBF and PAFC.展开更多
Seventy-nine strains of bioflocculant-producing bacteria were isolated from 3 activated sludge samples. Among them, strain MYC was found to have the highest and stable flocculating rate for both kaolin clay suspension...Seventy-nine strains of bioflocculant-producing bacteria were isolated from 3 activated sludge samples. Among them, strain MYC was found to have the highest and stable flocculating rate for both kaolin clay suspension and oil-field produced water. The bacterial strain was identified as Klebsiella sp. MYC according to its morphological and biochemical characteristics and 16SrDNA sequence. The optimal medium for bioflocculant production by this bacterial strain was composed of cane sugar 20 g L^-1, KH2PO4 2 g L^-1, K2HPO4 5 g L^- 1, ( NH4)2SO4 0.2 g L^-1, urea 0.5 g L^- 1 and yeast extract 0.5 g L^- 1, the initial pH being 5.5. When the suspension of kaolin clay was treated with0.5% of Klebsiella sp. MYC culture broth, the flocculating rate reached more than 90.0% in the presence of 500mg L^-1 CaCI2, while the flocculating rate for oil-field produced water was near 80.0% in a pH range of 7.0 - 9.0 with the separation of oil and suspended particles from the oil-field produced water under similar conditions. The environment-friendly nature of the bioflocculant and high flocculating rate of the strain make the bioflocculant produced by Klebsiella sp. MYC an attractive bioflocculant in oil-field produced water treatment.展开更多
A systematic study was undertaken to investigate the effects of the manganese incorporation manner on the textural properties, bulk and surface phase compositions, reduction/carburization behaviors, and surface basici...A systematic study was undertaken to investigate the effects of the manganese incorporation manner on the textural properties, bulk and surface phase compositions, reduction/carburization behaviors, and surface basicity of an iron-based Fischer-Tropsch synthesis (FTS) catalyst. The catalyst samples were characterized by N2 physisorption, X-ray photoelectron spectroscopy (XPS), H2 (or CO) temperature-programmed reduction (TPR), CO2 temperature-programmed desorption (TPD), and M5ssbauer spectroscopy. The FTS performance of the catalysts was studied in a slurry-phase continuously stirred tank reactor (CSTR). The characterization results indicated that the manganese promoter incorporated by using the coprecipitation method could improve the dispersion of iron oxide, and decrease the size of the iron oxide crystallite. The manganese incorporated with the impregnation method is enriched on the catalyst's surface. The manganese promoter added with the impregnation method suppresses the reduction and carburization of the catalyst in H2, CO, and syngas because of the excessive enrichment of manganese on the catalyst surface. The catalyst added manganese using the coprecipitation method has the highest CO conversion (51.9%) and the lowest selectivity for heavy hydrocarbons (C12+).展开更多
A bioflocculant-producing mutator strain, NIM-192, was screened out through nitrogen ion implanting into F J-7 strain. The results showed that NIM-192 had good genetic stability and high flocculating activity, and the...A bioflocculant-producing mutator strain, NIM-192, was screened out through nitrogen ion implanting into F J-7 strain. The results showed that NIM-192 had good genetic stability and high flocculating activity, and the flocculating rate increased by 34.26% than that of the original. Sucrose, complex nitrogen source contained yeast extract, urea and pH 7.0~ 9.0 were chosen as the best carbon source, nitrogen source and initial solution pH for bioflocculant production, respectively. The bioflocculant kept high and stable flocculating activity at alkalinous reaction mixture with a pH beyond 7.0, while the flocculating activity was remarkably reduced when the reaction pH was lower than 7.0. Addition of many cations could obviously increase the flocculating rate, among which Ca^2+ demonstrated the best effect. The bioflocculant had very strong acid-base stability and thermo-stability.The flocculating rate kept over 86% when pH of the bioflocculant was in a range of 3.0 ~ 12.0, and the change of flocculating activity was not great when heated at 100℃ for 60 rain.展开更多
SiC magnetic abrasive is used to polish surfaces of precise, complex parts which are hard, brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF). Various techniques are employed to produce this ...SiC magnetic abrasive is used to polish surfaces of precise, complex parts which are hard, brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF). Various techniques are employed to produce this magnetic abrasive, but few can meet production demands because they are usually time-consuming, complex with high cost, and the magnetic abrasives made by these techniques have irregular shape and low bonding strength that result in low processing efficiency and shorter service life. Therefore, an attempt is made by combining gas atomization and rapid solidification to fabricate a new iron-based SiC spherical composite magnetic abrasive. The experimental system to prepare this new magnetic abrasive is constructed according to the characteristics of gas atomization and rapid solidification process and the performance requirements of magnetic abrasive. The new iron-based SiC spherical composite magnetic abrasive is prepared successfully when the machining parameters and the composition proportion of the raw materials are controlled properly. Its morphology, microstructure, phase composition are characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD) analysis. The MAF tests on plate of mold steel S136 are carried out without grinding lubricant to assess the finishing performance and service life of this new SiC magnetic abrasive. The surface roughness(Ra) of the plate worked is rapidly reduced to 0.051 μm from an initial value of 0.372 μm within 5 min. The MAF test is carried on to find that the service life of this new SiC magnetic abrasive reaches to 155 min. The results indicate that this process presented is feasible to prepare the new SiC magnetic abrasive; and compared with previous magnetic abrasives, the new SiC spherical composite magnetic abrasive has excellent finishing performance, high processing efficiency and longer service life. The presented method to fabricate magnetic abrasive through gas atomization and rapid solidification presented can significantly improve the finishing performance and service life of magnetic abrasive, and provide a more practical approach for large-scale industrial production of magnetic abrasive.展开更多
A compound bioflocculant CBF,produced by mixed culture of Rhizobium radiobacter F2 and Bacillus sphaeicus F6, was investigated with regard to its production and flocculating properties. The optimization of the culture...A compound bioflocculant CBF,produced by mixed culture of Rhizobium radiobacter F2 and Bacillus sphaeicus F6, was investigated with regard to its production and flocculating properties. The optimization of the culture medium constituents including carbon source,nitrogen source and C / N ratio,metal ions and ionic strength on CBF production were studied. Flocculating properties of CBF were examined by a series of experiments and CBF had good flocculating activities in kaolin suspension with divalent cations and stable over wide range of p H. Studies of the flocculating properties revealed that the flocculation could be stimulated by cations Ca2+,Mg2+,Fe2+,Al3+and Fe3+. In addition,it was stable at 4-30 ℃ in the presence of Ca Cl2. It was found to be effective for flocculation of a kaolin suspension under neutral and weak alkaline conditions( p H 7. 0- 9. 0),and flocculating activities of higher than 95% were obtained when the CBF concentrations among 6- 14 mg / L at p H 8. 0. The results of this study indicate that CBF is a potential replacement of conventional synthetic flocculants and is widely applied in water treatment and downstream processing of food and fermentation industries.展开更多
Fermentation of bioflocculant with Corynebacterium glutamicum was studied by way of kinetic modeling.Lorentzian modified Logistic model, time-corrected Luedeking–Piret and Luedeking–Piret type models were proposed a...Fermentation of bioflocculant with Corynebacterium glutamicum was studied by way of kinetic modeling.Lorentzian modified Logistic model, time-corrected Luedeking–Piret and Luedeking–Piret type models were proposed and applied to describe the cell growth, bioflocculant synthesis and consumption of substrates, with the correlation of initial biomass concentration and initial glucose concentration, respectively. The results showed that these models could well characterize the batch culture process of C. glutamicum at various initial glucose concentrations from 10.0 to 17.5 g·L-1. The initial biomass concentration could shorten the lag time of cell growth,while the maximum biomass concentration was achieved only at the optimal initial glucose concentration of16.22 g·L-1. A novel three-stage fed-batch strategy for bioflocculant production was developed based on the model prediction, in which the lag phase, quick biomass growth and bioflocculant production stages were sequentially proceeded with the adjustment of glucose concentration and dissolved oxygen. Biomass of2.23 g·L-1was obtained and bioflocculant concentration was enhanced to 176.32 mg·L-1, 18.62% and403.63% higher than those in the batch process, respectively, indicating an efficient fed-batch culture strategy for bioflocculant production.展开更多
A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characteriz...A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characterized by using N2 physical adsorption, temperature-programmed reduction/desorption (TPR/TPD) and MSssbauer effect spectroscopy (MES) methods. The characterization results indicated that the BET surface area increases with increasing Al2O3 content and passes through a maximum at the Al2O3/Fe ratio of 10/100 (weight basis). After the point, it decreases with further increase in Al2O3 content. The incorporation of Al2O3 binder was found to weaken the surface basicity and suppress the reduction and carburization of iron-based catalysts probably due to the strong K-Al2O3 and Fe-Al2O3 interactions. Furthermore, the H2 adsorption ability of the catalysts is enhanced with increasing Al2O3 content. The FTS performances of the catalysts were tested in a slurry-phase continuously stirred tank reactor (CSTR) under the reaction conditions of 260 ℃, 1.5 MPa, 1000 h^-1 and molar ratio of H2/CO 0.67 for 200 h. The results showed that the addition of small amounts of Al2O3 affects the activity of iron-based catalysts to a little extent. However, with further increase of Al2O3 content, the FTS activity and water gas shift reaction (WGS) activity are decreased severely. The addition of appropriate Al2O3 do not affect the product selectivity, but the catalysts incorporated with large amounts of Al2O3 have higher selectivity for light hydrocarbons and lower selectivity for heavy hydrocarbons.展开更多
基金The authors acknowledge the support of the Shenyang University of Technology(QNPY202209-4)the National Natural Science Foundation of China(21571132)+1 种基金Jiangsu University Advanced Talent Fund(5501710002)the Education Department of Liaoning Province(JYTQN2023285).
文摘Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical capacity of 372 mA·h·g^(−1),thus hindering further development toward high-capacity and large-scale applications.Alkaline earth metal iron-based oxides are considered a promising candidate to replace graphite because of their low preparation cost,good thermal stability,superior stability,and high electrochemical performance.Nonetheless,many issues and challenges remain to be addressed.Herein,we systematically summarize the research progress of alkaline earth metal iron-based oxides as LIB anodes.Meanwhile,the material and structural properties,synthesis methods,electrochemical reaction mechanisms,and improvement strategies are introduced.Finally,existing challenges and future research directions are discussed to accelerate their practical application in commercial LIBs.
基金the National Natural Science Foundation of China-Outstanding Youth Foundation (No. 22322814)the National Natural Science Foundation of China (No. 22108144)the Natural Science Foundation of Shandong-Outstanding Youth Foundation (No. ZR2023YQ017)。
文摘Capturing and utilizing CO_(2)from the production process is the key to solving the excessive CO_(2)emission problem. CO_(2)hydrogenation with green hydrogen to produce olefins is an effective and promising way to utilize CO_(2)and produce valuable chemicals. The olefins can be produced by CO_(2)hydrogenation through two routes, i.e., CO_(2)-FTS (carbon dioxide Fischer- Tropsch synthesis) and MeOH (methanol-mediated), among which CO_(2)-FTS has significant advantages over MeOH in practical applications due to its relatively high CO_(2)conversion and low energy consumption potentials. However, the CO_(2)-FTS faces challenges of difficult CO_(2)activation and low olefins selectivity. Iron-based catalysts are promising for CO_(2)-FTS due to their dual functionality of catalyzing RWGS and CO-FTS reactions. This review summarizes the recent progress on iron-based catalysts for CO_(2)hydrogenation via the FTS route and analyzes the catalyst optimization from the perspectives of additives, active sites, and reaction mechanisms. Furthermore, we also outline principles and challenges for rational design of high-performance CO_(2)-FTS catalysts.
基金supported by Thailand Science Research and Innovation Fund Chulalongkorn University,Thailand(IND66210014)。
文摘Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.
文摘Superconducting transition temperature(Tc),as a crucial parameter,exploring its relationship with various macroscopic and microscopic factors helps to understand the mechanism of high-temperature superconductivity from multiple perspectives,aiding in a multidimensional comprehension of high-temperature superconductivity mechanisms.Drawing inspiration from the block-layer structure models of cuprate superconductors,we computationally investigated the interlayer interaction energies in the 12442-type iron-based superconducting materials AkCa_(2)Fe_(4)As_(4)F_(2)(Ak=K,Rb,Cs)systems based on the block-layer model and explored their relationship with Tc.We observed that an increase in interlayer combinative energy leads to a decrease in Tc,while conversely,a decrease in interlayer combination energy results in an increase in Tc.Further,we found that the contribution of the Fe 3d band structure,especially the 3dz2 orbital,to charge transfer is significant.
基金Supported by the Science Research Project of Qingdao Technical College in 2012(12-A-2)~~
文摘[Objective] This study aimed to screen a bacterial strain capable of producing bioflocculant. [Method] A bacterial strain T-11 capable of producing bioflocculant was isolated from activated sludge. Detailed tests on the morphological, physiological and biochemical characteristics were carried out and identification was performed to identify the strain. Finally, the bioflocculant was isolated and purified, and the flocculating activity and chemical characteristics were measured. [Result] It was identified as Serratia plumuthica based on its morphological, physiological and biochemical characteristics. This strain secreted flocculant best in a culture medium which included sucrose and NaNO3. The maximal cell growth was achieved within 10 h and the flocculating activity paralleled to it. It was found to be effective for flocculation of kaolin suspension, when added at a final concentration of 0.7 mg/L, over a range of pHs (2-7), and temperature (approximately 30-80 ℃). Chemical analysis indicated that the bioflocculant was an acidic polysaccharide consisting of glucose, glucuronic acid and galactose, talose and altrose. Infrared spectrum analysis also revealed typical characteristics of polysaccharides. [Conclusion] The biofloccu- lants produced by strain T-11 can greatly improve the ability of activated sludge to settle.
基金Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.20050247016)the Program forNew Century Excellent Talents in University(NCET-05-0387).
文摘The flocculating activity of a novel bioflocculant MMF1 produced by multiple-microorganism consortia MM1 was investigated. MM1 was composed of strain BAFRT4 identified as Staphylococcus sp. and strain CYGS1 identified as Pseudomonas sp. The flocculating activity of MMF1 isolated from the screening medium was 82.9%, which is remarkably higher than that of the bioflocculant produced by either of the strains under the same condition. Brewery wastewater was also used as the carbon source for MM1, and the cost-effective production medium for MM1 mainly comprised 1.0 L brewery water (chemical oxygen demand (COD) 5000 mg/L), 0.5 g/L urea, 0.5 g/L yeast extract, and 0.2 g/L (NH4)2SO4. The optimal conditions for the production of MMF1 was inoculum size 2%, initial pH 6.0, cultivating temperature 30℃, and shaking speed 160 r/min, under which the flocculating activity of the MMF1 reached 96.8%. Fifteen grams of purified bioflocculant could be recovered from 1.0 L of fermentation broth. MMF1 was identified as a macromolecular substance containing both protein and polysaccharide. It showed good flocculating performance in treating indigotin printing and dyeing wastewater, and the maximal removal efficiencies of COD and chroma were 79.2% and 86.5%, respectively.
文摘Objective To study the characteristics of a bioflocculant named MBF7 produced by Penicillum strain HHE-P7 and the effects of cultivation conditions on bioflocculant production. Methods The chemical group in the bioflocculant molecules was shown by Fourier transform infrared (FTIR) spectra, and the average molecular weight of MBF7 was estimated by gel permeation chromatography. The effects of medium components on bioflocculant production and flocculating activity were studied. Results Phospho-, amino-, hydroxyl, and carboxyl groups were the major fractions of MBF7, and the molecule weight was about 3.0 × 10^5 Da. In addition, the carbon and nitrogen sources favorable for the bioflocculant production were glucose and yeast extract respectively. When the initial pH of the medium was adjusted to 5.0, high flocculant efficiency could be achieved. Conclusion The bioflocculant MBF7 is a new macromolecule with high flocculating efficiency for Kaolin suspension, and could be produced under appropriate culture conditions.
基金Project supported by the National Basic Research Program (973) of China (No. 2003CB415002) and the Doctoral Study of the Education Ministry of China (No. 20030027008)
文摘Screening of microorganisms producing flocculating substances was carried out. A strain secreting a large amount of bioflocculant was isolated from wastewater samples collected from the Little Moon River in Beijing. Based on the morphological properties and 16S rDNA sequence analysis, the isolate (designated W31) was classified as Vagococcus sp. A bioflocculant (named MBFW31) produced by W31 was extracted from the culture broth by ethanol precipitation and purified by gel chroma-tography. MBFW31 was heat-stable and had strong flocculating activity in a wide range of pH with relatively low dosage re-quirement. MBFW31 was identified as a polysaccharide with molecular weight over 2×106. It contained neutral sugar and uronic acid as its major and minor components, respectively. Infrared spectra showed the presence of hydroxyl, carboxyl and methoxyl group in its molecules. The present results suggested that MBFW31 had potential application in wastewater treatment.
基金Supported by the Innovative Project for Young Scientific Scholars of Fujian Province(No.2 0 0 2 J0 4 4 )
文摘The effect of pH of the fermentation medium on cell growth and the production of a novel bioflocculant(named REA-11) by Corynebacterium glutamicum CCTCC M201005 were investigated. The maximum biomass(2.23 g/L) and flocculating activity(142.2 U/mL) were simultaneously obtained at the 14th hour when the pH value of the culture medium was maintained at 7.0 during the whole fermentation process. The production of REA-11 kept on a trend of increase till the later phase of fermentation process, which resulted in the ultimate flocculating activity of the culture broth to enhance to nearly 100 U/mL at pH 6.0. A two-stage pH control mode was adopted in REA-11 production in which the pH value of the culture medium was controlled at 7.0 during the first 14 h, then decreased to 6.0 that was maintained until the end of the fermentation process. With the two-stage pH control mode, the maximum flocculating activity reached 178.8 U/mL which was 30% higher than that obtained under the condition of pH 7.0 and the biomass enhanced about 15%. Compared with the fermentation process without pH control, REA-11 production and cell growth via the two-stage pH control mode increased 80% and 25%, respectively.
基金the Shenhuo Mining Group Co.Ltd.,China for its financial support.At the same time,we also thank the National Natural Science Foundation of China(No.40373044)the Natural Science Foundation of Jiangsu Province (No.05KJD610209) for their supportthe Jiangsu Key Laboratory of Resources and Environmental Information Engineering for its technical support.
文摘We studied how bioflocculants,produced by white-rot fungi,affect flocculation in slime water.Based on a test in an orthogonal design,flocculation conditions were optimized.The results show that flocculation activity is at its highest when the following conditions are met:slime water concentration 27.42 g/L;coagulant aid(CaCl_2) mass concentration 5.0 g/L;two-segment stirrings:the first at a stirring speed of 60 r/min for 180 s and the second 180 r/min for 60 s;a pH of 11 and a flocculant concentration of 15 mL/L.The flocculation activity can be up to 98.71%of bioflocculants at the time.Further experiments indicate that most of the flocculation active material is found outside the mycelium cells.This is the extracellular secretion produced by mycelium cells during the fermentation process.This flocculant has strong thermal stability.Many kinds of cations have a flocculation function to assist bioflocculants.This aid-flocculation effect of the divalent cation Ca^(2+) is obvious in the bioflocculant produced by the white-rot fungus.Therefore,this is of great value when applied to control engineering in the battle against water pollution.
文摘Screening of bioflocculant-producing microorganisms was carded out. A strain that secreted excellent bioflocculant was isolated from municipal sewage using the spread plate technique, identified as Klebsiella sp. by the analytical profile index (API) identification system, and named A9. Several important factors that had an effect on A9's bioflocculant-producing and flocculating activity were studied. A total of 4 g/L Kaolin suspension was used to measure the flocculating activity of the bioflocculant from A9. It was found that maltose and urea were Ag's best carbon and nitrogen sources, respectively, and the flocculating activity of the flocculating agent from A9 was markedly increased by the addition of trivalent cations such as Fe^3+ and Al^3+; furthermore, the bioflocculant produced by A9 was most effective when the pH value was 6.0.
文摘To investigate the application of compound bioflocculant (CBF) in drinking water treatment at pilot plant, CBF and polymerized aluminium ferrum chloride (PAFC) coagulant were used to treat raw water taken from Longhupao Reservoir in Heilongjiang Province for the removal of turbidity, COl), UV254 and residual Al. Coagulation test shows that the coagulation enhanced by CBF and PAFC exhibits more effective performance than that enhanced by the individual of them, and the total combination dosage is lower than that of the individual. The residual Al from PAFC can be removed efficiently by CBF. The removal efficiency of turbidity reaches 76.6% by combining CBF of 2 mg/L and PAFC of 15 mg/L, COl) is decreased from 3.80 mg/L to 1.62 mg/ L, and the concentration of residual Al is only 0. 033 mg/L in the product water. It can be speculated that adsorption-bridging and sweep-coagulation processes are predominant in the flocculation process by the combination of CBF and PAFC.
文摘Seventy-nine strains of bioflocculant-producing bacteria were isolated from 3 activated sludge samples. Among them, strain MYC was found to have the highest and stable flocculating rate for both kaolin clay suspension and oil-field produced water. The bacterial strain was identified as Klebsiella sp. MYC according to its morphological and biochemical characteristics and 16SrDNA sequence. The optimal medium for bioflocculant production by this bacterial strain was composed of cane sugar 20 g L^-1, KH2PO4 2 g L^-1, K2HPO4 5 g L^- 1, ( NH4)2SO4 0.2 g L^-1, urea 0.5 g L^- 1 and yeast extract 0.5 g L^- 1, the initial pH being 5.5. When the suspension of kaolin clay was treated with0.5% of Klebsiella sp. MYC culture broth, the flocculating rate reached more than 90.0% in the presence of 500mg L^-1 CaCI2, while the flocculating rate for oil-field produced water was near 80.0% in a pH range of 7.0 - 9.0 with the separation of oil and suspended particles from the oil-field produced water under similar conditions. The environment-friendly nature of the bioflocculant and high flocculating rate of the strain make the bioflocculant produced by Klebsiella sp. MYC an attractive bioflocculant in oil-field produced water treatment.
基金Foundation item:the National Natural Science Foundation of China(20590360)the Natural Science Foundation of Shanxi Province(2006021014)+1 种基金the National Outstanding Young Scientists Foundation of China(20625620)National Key Basic Research Program of China(973 Program)(2007CB216401).
文摘A systematic study was undertaken to investigate the effects of the manganese incorporation manner on the textural properties, bulk and surface phase compositions, reduction/carburization behaviors, and surface basicity of an iron-based Fischer-Tropsch synthesis (FTS) catalyst. The catalyst samples were characterized by N2 physisorption, X-ray photoelectron spectroscopy (XPS), H2 (or CO) temperature-programmed reduction (TPR), CO2 temperature-programmed desorption (TPD), and M5ssbauer spectroscopy. The FTS performance of the catalysts was studied in a slurry-phase continuously stirred tank reactor (CSTR). The characterization results indicated that the manganese promoter incorporated by using the coprecipitation method could improve the dispersion of iron oxide, and decrease the size of the iron oxide crystallite. The manganese incorporated with the impregnation method is enriched on the catalyst's surface. The manganese promoter added with the impregnation method suppresses the reduction and carburization of the catalyst in H2, CO, and syngas because of the excessive enrichment of manganese on the catalyst surface. The catalyst added manganese using the coprecipitation method has the highest CO conversion (51.9%) and the lowest selectivity for heavy hydrocarbons (C12+).
基金the State Key Development Program for Basic Research of China(No.2004CB719604)
文摘A bioflocculant-producing mutator strain, NIM-192, was screened out through nitrogen ion implanting into F J-7 strain. The results showed that NIM-192 had good genetic stability and high flocculating activity, and the flocculating rate increased by 34.26% than that of the original. Sucrose, complex nitrogen source contained yeast extract, urea and pH 7.0~ 9.0 were chosen as the best carbon source, nitrogen source and initial solution pH for bioflocculant production, respectively. The bioflocculant kept high and stable flocculating activity at alkalinous reaction mixture with a pH beyond 7.0, while the flocculating activity was remarkably reduced when the reaction pH was lower than 7.0. Addition of many cations could obviously increase the flocculating rate, among which Ca^2+ demonstrated the best effect. The bioflocculant had very strong acid-base stability and thermo-stability.The flocculating rate kept over 86% when pH of the bioflocculant was in a range of 3.0 ~ 12.0, and the change of flocculating activity was not great when heated at 100℃ for 60 rain.
基金supported by National Natural Science Foundation of China(Grant No. 50775133)
文摘SiC magnetic abrasive is used to polish surfaces of precise, complex parts which are hard, brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF). Various techniques are employed to produce this magnetic abrasive, but few can meet production demands because they are usually time-consuming, complex with high cost, and the magnetic abrasives made by these techniques have irregular shape and low bonding strength that result in low processing efficiency and shorter service life. Therefore, an attempt is made by combining gas atomization and rapid solidification to fabricate a new iron-based SiC spherical composite magnetic abrasive. The experimental system to prepare this new magnetic abrasive is constructed according to the characteristics of gas atomization and rapid solidification process and the performance requirements of magnetic abrasive. The new iron-based SiC spherical composite magnetic abrasive is prepared successfully when the machining parameters and the composition proportion of the raw materials are controlled properly. Its morphology, microstructure, phase composition are characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD) analysis. The MAF tests on plate of mold steel S136 are carried out without grinding lubricant to assess the finishing performance and service life of this new SiC magnetic abrasive. The surface roughness(Ra) of the plate worked is rapidly reduced to 0.051 μm from an initial value of 0.372 μm within 5 min. The MAF test is carried on to find that the service life of this new SiC magnetic abrasive reaches to 155 min. The results indicate that this process presented is feasible to prepare the new SiC magnetic abrasive; and compared with previous magnetic abrasives, the new SiC spherical composite magnetic abrasive has excellent finishing performance, high processing efficiency and longer service life. The presented method to fabricate magnetic abrasive through gas atomization and rapid solidification presented can significantly improve the finishing performance and service life of magnetic abrasive, and provide a more practical approach for large-scale industrial production of magnetic abrasive.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2009AA062906)the"Twelfth Five-Year Plan"National Key Technology R&D Program of China(Grant No.2012BAD14B06-04)+2 种基金the National Natural Science Foundation of China(Grant No.51478140&51408200)State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(Grant No.2015DX06)Promising Youngsters Training Program of Heilongjiang University of Science and Technology(Grant No.Q20120201)
文摘A compound bioflocculant CBF,produced by mixed culture of Rhizobium radiobacter F2 and Bacillus sphaeicus F6, was investigated with regard to its production and flocculating properties. The optimization of the culture medium constituents including carbon source,nitrogen source and C / N ratio,metal ions and ionic strength on CBF production were studied. Flocculating properties of CBF were examined by a series of experiments and CBF had good flocculating activities in kaolin suspension with divalent cations and stable over wide range of p H. Studies of the flocculating properties revealed that the flocculation could be stimulated by cations Ca2+,Mg2+,Fe2+,Al3+and Fe3+. In addition,it was stable at 4-30 ℃ in the presence of Ca Cl2. It was found to be effective for flocculation of a kaolin suspension under neutral and weak alkaline conditions( p H 7. 0- 9. 0),and flocculating activities of higher than 95% were obtained when the CBF concentrations among 6- 14 mg / L at p H 8. 0. The results of this study indicate that CBF is a potential replacement of conventional synthetic flocculants and is widely applied in water treatment and downstream processing of food and fermentation industries.
基金Supported by the National Natural Science Foundation of China(21206143,51378444)the program for New Century Excellent Talents of Education Ministry of China(ncet-13-0501)
文摘Fermentation of bioflocculant with Corynebacterium glutamicum was studied by way of kinetic modeling.Lorentzian modified Logistic model, time-corrected Luedeking–Piret and Luedeking–Piret type models were proposed and applied to describe the cell growth, bioflocculant synthesis and consumption of substrates, with the correlation of initial biomass concentration and initial glucose concentration, respectively. The results showed that these models could well characterize the batch culture process of C. glutamicum at various initial glucose concentrations from 10.0 to 17.5 g·L-1. The initial biomass concentration could shorten the lag time of cell growth,while the maximum biomass concentration was achieved only at the optimal initial glucose concentration of16.22 g·L-1. A novel three-stage fed-batch strategy for bioflocculant production was developed based on the model prediction, in which the lag phase, quick biomass growth and bioflocculant production stages were sequentially proceeded with the adjustment of glucose concentration and dissolved oxygen. Biomass of2.23 g·L-1was obtained and bioflocculant concentration was enhanced to 176.32 mg·L-1, 18.62% and403.63% higher than those in the batch process, respectively, indicating an efficient fed-batch culture strategy for bioflocculant production.
基金The financial support from the National Natural Science Foundation of China (20590361)the National Outstanding Young Scientists Foundation of China (20625620)
文摘A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characterized by using N2 physical adsorption, temperature-programmed reduction/desorption (TPR/TPD) and MSssbauer effect spectroscopy (MES) methods. The characterization results indicated that the BET surface area increases with increasing Al2O3 content and passes through a maximum at the Al2O3/Fe ratio of 10/100 (weight basis). After the point, it decreases with further increase in Al2O3 content. The incorporation of Al2O3 binder was found to weaken the surface basicity and suppress the reduction and carburization of iron-based catalysts probably due to the strong K-Al2O3 and Fe-Al2O3 interactions. Furthermore, the H2 adsorption ability of the catalysts is enhanced with increasing Al2O3 content. The FTS performances of the catalysts were tested in a slurry-phase continuously stirred tank reactor (CSTR) under the reaction conditions of 260 ℃, 1.5 MPa, 1000 h^-1 and molar ratio of H2/CO 0.67 for 200 h. The results showed that the addition of small amounts of Al2O3 affects the activity of iron-based catalysts to a little extent. However, with further increase of Al2O3 content, the FTS activity and water gas shift reaction (WGS) activity are decreased severely. The addition of appropriate Al2O3 do not affect the product selectivity, but the catalysts incorporated with large amounts of Al2O3 have higher selectivity for light hydrocarbons and lower selectivity for heavy hydrocarbons.