Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical cap...Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical capacity of 372 mA·h·g^(−1),thus hindering further development toward high-capacity and large-scale applications.Alkaline earth metal iron-based oxides are considered a promising candidate to replace graphite because of their low preparation cost,good thermal stability,superior stability,and high electrochemical performance.Nonetheless,many issues and challenges remain to be addressed.Herein,we systematically summarize the research progress of alkaline earth metal iron-based oxides as LIB anodes.Meanwhile,the material and structural properties,synthesis methods,electrochemical reaction mechanisms,and improvement strategies are introduced.Finally,existing challenges and future research directions are discussed to accelerate their practical application in commercial LIBs.展开更多
Capturing and utilizing CO_(2)from the production process is the key to solving the excessive CO_(2)emission problem. CO_(2)hydrogenation with green hydrogen to produce olefins is an effective and promising way to uti...Capturing and utilizing CO_(2)from the production process is the key to solving the excessive CO_(2)emission problem. CO_(2)hydrogenation with green hydrogen to produce olefins is an effective and promising way to utilize CO_(2)and produce valuable chemicals. The olefins can be produced by CO_(2)hydrogenation through two routes, i.e., CO_(2)-FTS (carbon dioxide Fischer- Tropsch synthesis) and MeOH (methanol-mediated), among which CO_(2)-FTS has significant advantages over MeOH in practical applications due to its relatively high CO_(2)conversion and low energy consumption potentials. However, the CO_(2)-FTS faces challenges of difficult CO_(2)activation and low olefins selectivity. Iron-based catalysts are promising for CO_(2)-FTS due to their dual functionality of catalyzing RWGS and CO-FTS reactions. This review summarizes the recent progress on iron-based catalysts for CO_(2)hydrogenation via the FTS route and analyzes the catalyst optimization from the perspectives of additives, active sites, and reaction mechanisms. Furthermore, we also outline principles and challenges for rational design of high-performance CO_(2)-FTS catalysts.展开更多
Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ...Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.展开更多
Superconducting transition temperature(Tc),as a crucial parameter,exploring its relationship with various macroscopic and microscopic factors helps to understand the mechanism of high-temperature superconductivity fro...Superconducting transition temperature(Tc),as a crucial parameter,exploring its relationship with various macroscopic and microscopic factors helps to understand the mechanism of high-temperature superconductivity from multiple perspectives,aiding in a multidimensional comprehension of high-temperature superconductivity mechanisms.Drawing inspiration from the block-layer structure models of cuprate superconductors,we computationally investigated the interlayer interaction energies in the 12442-type iron-based superconducting materials AkCa_(2)Fe_(4)As_(4)F_(2)(Ak=K,Rb,Cs)systems based on the block-layer model and explored their relationship with Tc.We observed that an increase in interlayer combinative energy leads to a decrease in Tc,while conversely,a decrease in interlayer combination energy results in an increase in Tc.Further,we found that the contribution of the Fe 3d band structure,especially the 3dz2 orbital,to charge transfer is significant.展开更多
A systematic study was undertaken to investigate the effects of the manganese incorporation manner on the textural properties, bulk and surface phase compositions, reduction/carburization behaviors, and surface basici...A systematic study was undertaken to investigate the effects of the manganese incorporation manner on the textural properties, bulk and surface phase compositions, reduction/carburization behaviors, and surface basicity of an iron-based Fischer-Tropsch synthesis (FTS) catalyst. The catalyst samples were characterized by N2 physisorption, X-ray photoelectron spectroscopy (XPS), H2 (or CO) temperature-programmed reduction (TPR), CO2 temperature-programmed desorption (TPD), and M5ssbauer spectroscopy. The FTS performance of the catalysts was studied in a slurry-phase continuously stirred tank reactor (CSTR). The characterization results indicated that the manganese promoter incorporated by using the coprecipitation method could improve the dispersion of iron oxide, and decrease the size of the iron oxide crystallite. The manganese incorporated with the impregnation method is enriched on the catalyst's surface. The manganese promoter added with the impregnation method suppresses the reduction and carburization of the catalyst in H2, CO, and syngas because of the excessive enrichment of manganese on the catalyst surface. The catalyst added manganese using the coprecipitation method has the highest CO conversion (51.9%) and the lowest selectivity for heavy hydrocarbons (C12+).展开更多
SiC magnetic abrasive is used to polish surfaces of precise, complex parts which are hard, brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF). Various techniques are employed to produce this ...SiC magnetic abrasive is used to polish surfaces of precise, complex parts which are hard, brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF). Various techniques are employed to produce this magnetic abrasive, but few can meet production demands because they are usually time-consuming, complex with high cost, and the magnetic abrasives made by these techniques have irregular shape and low bonding strength that result in low processing efficiency and shorter service life. Therefore, an attempt is made by combining gas atomization and rapid solidification to fabricate a new iron-based SiC spherical composite magnetic abrasive. The experimental system to prepare this new magnetic abrasive is constructed according to the characteristics of gas atomization and rapid solidification process and the performance requirements of magnetic abrasive. The new iron-based SiC spherical composite magnetic abrasive is prepared successfully when the machining parameters and the composition proportion of the raw materials are controlled properly. Its morphology, microstructure, phase composition are characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD) analysis. The MAF tests on plate of mold steel S136 are carried out without grinding lubricant to assess the finishing performance and service life of this new SiC magnetic abrasive. The surface roughness(Ra) of the plate worked is rapidly reduced to 0.051 μm from an initial value of 0.372 μm within 5 min. The MAF test is carried on to find that the service life of this new SiC magnetic abrasive reaches to 155 min. The results indicate that this process presented is feasible to prepare the new SiC magnetic abrasive; and compared with previous magnetic abrasives, the new SiC spherical composite magnetic abrasive has excellent finishing performance, high processing efficiency and longer service life. The presented method to fabricate magnetic abrasive through gas atomization and rapid solidification presented can significantly improve the finishing performance and service life of magnetic abrasive, and provide a more practical approach for large-scale industrial production of magnetic abrasive.展开更多
Although single-pulse lasers are often used in traditional laser-induced breakdown spectroscopy (LIBS) measurements, their measurement outcomes are generally undesirable because of the low sensitivity of carbon in i...Although single-pulse lasers are often used in traditional laser-induced breakdown spectroscopy (LIBS) measurements, their measurement outcomes are generally undesirable because of the low sensitivity of carbon in iron-based alloys. In this article, a double-pulse laser was applied to improve the signal intensity of carbon. Both the inter-pulse delay and the combination of laser wavelengths in double-pulse laser-induced breakdown spectroscopy (DP-LIBS) were optimized in our experiment. At the optimized inter-pulse delay, the combination of a first laser of 532 nm and a second laser of 1,064 nm achieved the highest signal enhancement. The properties of the target also played a role in determining the mass ablation enhancement in DP-LIBS configuration.展开更多
A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characteriz...A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characterized by using N2 physical adsorption, temperature-programmed reduction/desorption (TPR/TPD) and MSssbauer effect spectroscopy (MES) methods. The characterization results indicated that the BET surface area increases with increasing Al2O3 content and passes through a maximum at the Al2O3/Fe ratio of 10/100 (weight basis). After the point, it decreases with further increase in Al2O3 content. The incorporation of Al2O3 binder was found to weaken the surface basicity and suppress the reduction and carburization of iron-based catalysts probably due to the strong K-Al2O3 and Fe-Al2O3 interactions. Furthermore, the H2 adsorption ability of the catalysts is enhanced with increasing Al2O3 content. The FTS performances of the catalysts were tested in a slurry-phase continuously stirred tank reactor (CSTR) under the reaction conditions of 260 ℃, 1.5 MPa, 1000 h^-1 and molar ratio of H2/CO 0.67 for 200 h. The results showed that the addition of small amounts of Al2O3 affects the activity of iron-based catalysts to a little extent. However, with further increase of Al2O3 content, the FTS activity and water gas shift reaction (WGS) activity are decreased severely. The addition of appropriate Al2O3 do not affect the product selectivity, but the catalysts incorporated with large amounts of Al2O3 have higher selectivity for light hydrocarbons and lower selectivity for heavy hydrocarbons.展开更多
The second class of high-temperature superconductors (HTSCs), iron-based pnictides and chalcogenides, necessarily contain Fe2X2 ("X" refers to a pnictogen or a chalcogen element) layers, just like the first clas...The second class of high-temperature superconductors (HTSCs), iron-based pnictides and chalcogenides, necessarily contain Fe2X2 ("X" refers to a pnictogen or a chalcogen element) layers, just like the first class of HTSCs which possess the essential CuO2 sheets. So far, dozens of iron-based HTSCs, classified into nine groups, have been discovered. In this article, the crystal-chemistry aspects of the known iron-based superconductors are reviewed and summarized by employing "hard and soft acids and bases (HSAB)" concept. Based on these understandings, we propose an alternative route to exploring new iron-based superconductors via rational structural design.展开更多
Angle-resolved photoemission spectroscopy (ARPES) has played an important role in determining the band structure and the superconducting gap structure of iron-based superconductors. In this paper, from the ARPES per...Angle-resolved photoemission spectroscopy (ARPES) has played an important role in determining the band structure and the superconducting gap structure of iron-based superconductors. In this paper, from the ARPES perspective, we briefly review the main results from our group in recent years on the iron-based superconductors and their parent compounds, and depict our current understanding on the antiferromagnetism and superconductivity in these materials.展开更多
The effect of copper and rare-earth elements on corrosion behavior of high silicon iron-based alloys in nitric acid was studied by means of static and loading current corrosion experiments.The anodic polarization curv...The effect of copper and rare-earth elements on corrosion behavior of high silicon iron-based alloys in nitric acid was studied by means of static and loading current corrosion experiments.The anodic polarization curve was also made to discuss the corrosion mechanism.The examination on alloy microstructure and SEM corrosion pattern showed that when silicon content reached 14.5%,the Fe3Si phase appeared and the primary structure of the iron-base alloy was ferrite.When adding 4.57% copper in the iron alloy,its corrosion resistance in static diluted sulfuric acid was improved while its corrosion resistance and electrochemical corrosion properties in the nitric acid were decreased.In contrast,the addition of rare earth elements could improve the corrosion properties in all above conditions including in static diluted sulfuric acid and in nitric acid.展开更多
Iron-based superconductor family FeX(X=S,Se,Te)has been one of the research foci in physics and material science due to their record-breaking superconducting temperature(FeSe film)and rich physical phenomena.Recently,...Iron-based superconductor family FeX(X=S,Se,Te)has been one of the research foci in physics and material science due to their record-breaking superconducting temperature(FeSe film)and rich physical phenomena.Recently,FeS,the least studied Fe X compound(due to the difficulty in synthesizing high quality macroscopic crystals)attracted much attention because of its puzzling superconducting pairing symmetry.In this work,combining scanning tunneling microscopy and angle resolved photoemission spectroscopy(ARPES)with sub-micron spatial resolution,we investigate the intrinsic electronic structures of superconducting FeS from individual single crystalline domains.Unlike FeTe or FeSe,FeS remains identical tetragonal structure from room temperature down to 5 K,and the band structures observed can be well reproduced by our ab-initio calculations.Remarkably,mixed with the 1×1 tetragonal metallic phase,we also observe the coexistence of √5×√5 reconstructed insulating phase in the crystal,which not only helps explain the unusual properties of FeS,but also demonstrates the importance of using spatially resolved experimental tools in the study of this compound.展开更多
Between the two major arsenic-containing salts in natural water, arsenite(As(Ⅲ)) is far more harmful to human and the environment than arsenate(As(V)) due to its high toxicity and transportability. Therefore, preoxid...Between the two major arsenic-containing salts in natural water, arsenite(As(Ⅲ)) is far more harmful to human and the environment than arsenate(As(V)) due to its high toxicity and transportability. Therefore, preoxidation of As(Ⅲ) to As(V) is considered to be an effective means to reduce the toxicity of arsenic and to promote the removal efficiency of arsenic. Due to their high catalytic activity and arsenic affinity, iron-based functional materials can quickly oxidize As(Ⅲ) to As(V) in heterogeneous Fenton-like systems, and then remove As(V) from water through adsorption and surface coprecipitation. In this review, the effects of different iron-based functional materials such as zero-valent iron and iron(hydroxy) oxides on arsenic removal are compared, and the catalytic oxidation mechanism of As(Ⅲ) in heterogeneous Fenton process is further clarified. Finally, the main challenges and opportunities faced by iron-based As(Ⅲ) oxidation functional materials are prospected.展开更多
Polynorbornenes were synthesized in the presence of an iron based catalyst, 2,6-bis[1-(2,6-diisopropyl-phenylimino)ethyl]pyridine iron(Ⅱ) dichloride. The FTIR, 1H NMR and 13C NMR analysis results revealed t...Polynorbornenes were synthesized in the presence of an iron based catalyst, 2,6-bis[1-(2,6-diisopropyl-phenylimino)ethyl]pyridine iron(Ⅱ) dichloride. The FTIR, 1H NMR and 13C NMR analysis results revealed that the structure of the obtained polynorbornenes consisted of vinyl addition polymer substructures without any ring-opening structures. The polymers were amorphous with a short-range order, displayed in the WAXD(wide angle X-ray diffraction) diagrams. The glass transition temperatures ranged from 200 to 400 ℃. The effects of the polymerization reaction conditions, such as Al/Fe molar ratio and toluene/CH_2Cl_2 volume ratio, on the activity, intrinsic viscosity and T_g were also studied.展开更多
Majorana zero modes(MZMs) are Majorana-fermion-like quasiparticles existing in crystals or hybrid platforms with topologically non-trivial electronic structures. They obey non-Abelian braiding statistics and are consi...Majorana zero modes(MZMs) are Majorana-fermion-like quasiparticles existing in crystals or hybrid platforms with topologically non-trivial electronic structures. They obey non-Abelian braiding statistics and are considered promising to realize topological quantum computing. Discovery of MZM in the vortices of the iron-based superconductors(IBSs)has recently fueled the Majorana research in a way which not only removes the material barrier requiring construction of complicated hybrid artificial structures, but also enables observation of pure MZMs under higher temperatures. So far,MZMs have been observed in iron-based superconductors including FeTe_(0.55)Se_(0.45),(Li_(0.84)Fe_(0.16))OHFe Se, Ca KFe_(4)As_(4),and Li Fe As. In this topical review, we present an overview of the recent STM studies on the MZMs in IBSs. We start with the observation of MZMs in the vortices in FeTe_(0.55)Se_(0.45)and discuss the pros and cons of FeTe_(0.55)Se_(0.45) compared with other platforms. We then review the following up discovery of MZMs in vortices of Ca KFe_(4)As_(4), impurity-assisted vortices of Li Fe As, and quantum anomalous vortices in FeTe_(0.55)Se_(0.45), illustrating the pathway of the developments of MZM research in IBSs. Finally, we give perspective on future experimental works in this field.展开更多
The newly discovered iron-based superconductors have triggered renewed enormous research interest in the condensed matter physics community. Nuclear magnetic resonance (NMR) is a low-energy local probe for studying ...The newly discovered iron-based superconductors have triggered renewed enormous research interest in the condensed matter physics community. Nuclear magnetic resonance (NMR) is a low-energy local probe for studying strongly correlated electrons, and particularly important for high-Tc superconductors. In this paper, we review NMR studies on the structural transition, antiferromagnetic order, spin fluctuations, and superconducting properties of several iron-based high-Tc superconductors, including LaFeAsOl_xFx, LaFeAsOl_x, BaFe2As2, Bal_xKxFe2As2, Cao.23Nao.67Fe2As2, BaFe2(Asl_xPx)2, Ba(Fel_xRux)2As2, Ba(Fel_xCox)2As2, Lil+xFeAs, LiFel_xCoxAs, NaFeAs, NaFel_xCoxAs, KyFe2_xSe2, and (T1,Rb)yFe2_xSe2.展开更多
The microstructures and mechanical properties of an iron-based alloy (Fe-13Cr-3W-0.4Ti-0.25Y-0.30O) prepared by mechanical alloying were investigated with scanning electron microscope,optical microscope,X-ray diffract...The microstructures and mechanical properties of an iron-based alloy (Fe-13Cr-3W-0.4Ti-0.25Y-0.30O) prepared by mechanical alloying were investigated with scanning electron microscope,optical microscope,X-ray diffractometer and hardness tester.The results show that the particle size does not decrease with milling time because serious welding occurs at 144 h.The density of the alloy sintered at 1 523 K is affected by the particle size of the powder.Finer particles lead to a high sintered density,while the bulk density by using particles milled for 144 h is as low as 70%.In the microstructures of the annealed alloy,large elongated particles and fine equiaxed grains can be detected.The elongated particle zone has a higher microhardness than the equiaxed grain area in the annealed alloys due to the larger residual strain and higher density of the precipitated phase.展开更多
The effects of Mg,La and Ca promoters on primary and secondary CO2 and H2O formation pathways during Fischer-Tropsch synthesis on precipitated Fe/Cu/SiO2 catalysts are investigated.The chemisorbed oxygen atoms in the ...The effects of Mg,La and Ca promoters on primary and secondary CO2 and H2O formation pathways during Fischer-Tropsch synthesis on precipitated Fe/Cu/SiO2 catalysts are investigated.The chemisorbed oxygen atoms in the primary pathway formed in the CO dissociation steps reacted with co-adsorbed hydrogen or carbon monoxide to produce H2O and CO2,respectively.The secondary pathway was the water-gas shift reaction.The results indicated that the CO2 production led to an increase in both primary and secondary pathways,and H2O production decreased when surface basicity of the catalyst increased in the order Ca 〉 Mg 〉 La.展开更多
The preparation of the iron-based catalysts promoted by cobalt with a small amount of copper and aluminum for the high temperature shift reaction (HTS) with different sequences of adding catalyst raw materials durin...The preparation of the iron-based catalysts promoted by cobalt with a small amount of copper and aluminum for the high temperature shift reaction (HTS) with different sequences of adding catalyst raw materials during neutralization and precipitation was investigated. XRD, BET and particle size distribution (PSD) were used to characterize the prepared catalysts. It was found that the catalyst crystals were all γ-Fe2O3, and the intermediate of the catalyst after aging was Fe3O4. The crystallographic form of the catalyst and its intermediate was not affected by the addition sequence in the neutralization and precipitation process. The results showed that the specific surface area and the particle size of the catalysts depended on the addition sequence to the mother liquor. Cobalt with a small amount of copper and aluminum could increase the specific surface area and decrease the particle size of catalysts.展开更多
We report a systematic investigation on c-axis point-contact Andreev reflection (PCAR) in BaFe2-xNixAs2 superconducting single crystals from underdoped to overdoped regions (0.075≤ x ≤0.15). At low temperatures,...We report a systematic investigation on c-axis point-contact Andreev reflection (PCAR) in BaFe2-xNixAs2 superconducting single crystals from underdoped to overdoped regions (0.075≤ x ≤0.15). At low temperatures, an in-gap sharp peak at low-bias voltage is observed in PCAR for overdoped samples, in contrast to the case of underdoped junctions, in which an in-gap plateau is observed. The variety of the conductance spectra with doping can be well described by using a generalized Blonder-Tinkham-Klapwijk formalism with an angle-dependent gap. This gap shows a clear crossover from a nodeless in the underdoped side to a nodal feature in the overdoped region. This result provides evidence of the doping-induced evolution of the superconducting order parameter when the inter-pocket and intra-pocket scattering are tuned through doping, as expected in the s± scenario.展开更多
基金The authors acknowledge the support of the Shenyang University of Technology(QNPY202209-4)the National Natural Science Foundation of China(21571132)+1 种基金Jiangsu University Advanced Talent Fund(5501710002)the Education Department of Liaoning Province(JYTQN2023285).
文摘Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical capacity of 372 mA·h·g^(−1),thus hindering further development toward high-capacity and large-scale applications.Alkaline earth metal iron-based oxides are considered a promising candidate to replace graphite because of their low preparation cost,good thermal stability,superior stability,and high electrochemical performance.Nonetheless,many issues and challenges remain to be addressed.Herein,we systematically summarize the research progress of alkaline earth metal iron-based oxides as LIB anodes.Meanwhile,the material and structural properties,synthesis methods,electrochemical reaction mechanisms,and improvement strategies are introduced.Finally,existing challenges and future research directions are discussed to accelerate their practical application in commercial LIBs.
基金the National Natural Science Foundation of China-Outstanding Youth Foundation (No. 22322814)the National Natural Science Foundation of China (No. 22108144)the Natural Science Foundation of Shandong-Outstanding Youth Foundation (No. ZR2023YQ017)。
文摘Capturing and utilizing CO_(2)from the production process is the key to solving the excessive CO_(2)emission problem. CO_(2)hydrogenation with green hydrogen to produce olefins is an effective and promising way to utilize CO_(2)and produce valuable chemicals. The olefins can be produced by CO_(2)hydrogenation through two routes, i.e., CO_(2)-FTS (carbon dioxide Fischer- Tropsch synthesis) and MeOH (methanol-mediated), among which CO_(2)-FTS has significant advantages over MeOH in practical applications due to its relatively high CO_(2)conversion and low energy consumption potentials. However, the CO_(2)-FTS faces challenges of difficult CO_(2)activation and low olefins selectivity. Iron-based catalysts are promising for CO_(2)-FTS due to their dual functionality of catalyzing RWGS and CO-FTS reactions. This review summarizes the recent progress on iron-based catalysts for CO_(2)hydrogenation via the FTS route and analyzes the catalyst optimization from the perspectives of additives, active sites, and reaction mechanisms. Furthermore, we also outline principles and challenges for rational design of high-performance CO_(2)-FTS catalysts.
基金supported by Thailand Science Research and Innovation Fund Chulalongkorn University,Thailand(IND66210014)。
文摘Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.
文摘Superconducting transition temperature(Tc),as a crucial parameter,exploring its relationship with various macroscopic and microscopic factors helps to understand the mechanism of high-temperature superconductivity from multiple perspectives,aiding in a multidimensional comprehension of high-temperature superconductivity mechanisms.Drawing inspiration from the block-layer structure models of cuprate superconductors,we computationally investigated the interlayer interaction energies in the 12442-type iron-based superconducting materials AkCa_(2)Fe_(4)As_(4)F_(2)(Ak=K,Rb,Cs)systems based on the block-layer model and explored their relationship with Tc.We observed that an increase in interlayer combinative energy leads to a decrease in Tc,while conversely,a decrease in interlayer combination energy results in an increase in Tc.Further,we found that the contribution of the Fe 3d band structure,especially the 3dz2 orbital,to charge transfer is significant.
基金Foundation item:the National Natural Science Foundation of China(20590360)the Natural Science Foundation of Shanxi Province(2006021014)+1 种基金the National Outstanding Young Scientists Foundation of China(20625620)National Key Basic Research Program of China(973 Program)(2007CB216401).
文摘A systematic study was undertaken to investigate the effects of the manganese incorporation manner on the textural properties, bulk and surface phase compositions, reduction/carburization behaviors, and surface basicity of an iron-based Fischer-Tropsch synthesis (FTS) catalyst. The catalyst samples were characterized by N2 physisorption, X-ray photoelectron spectroscopy (XPS), H2 (or CO) temperature-programmed reduction (TPR), CO2 temperature-programmed desorption (TPD), and M5ssbauer spectroscopy. The FTS performance of the catalysts was studied in a slurry-phase continuously stirred tank reactor (CSTR). The characterization results indicated that the manganese promoter incorporated by using the coprecipitation method could improve the dispersion of iron oxide, and decrease the size of the iron oxide crystallite. The manganese incorporated with the impregnation method is enriched on the catalyst's surface. The manganese promoter added with the impregnation method suppresses the reduction and carburization of the catalyst in H2, CO, and syngas because of the excessive enrichment of manganese on the catalyst surface. The catalyst added manganese using the coprecipitation method has the highest CO conversion (51.9%) and the lowest selectivity for heavy hydrocarbons (C12+).
基金supported by National Natural Science Foundation of China(Grant No. 50775133)
文摘SiC magnetic abrasive is used to polish surfaces of precise, complex parts which are hard, brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF). Various techniques are employed to produce this magnetic abrasive, but few can meet production demands because they are usually time-consuming, complex with high cost, and the magnetic abrasives made by these techniques have irregular shape and low bonding strength that result in low processing efficiency and shorter service life. Therefore, an attempt is made by combining gas atomization and rapid solidification to fabricate a new iron-based SiC spherical composite magnetic abrasive. The experimental system to prepare this new magnetic abrasive is constructed according to the characteristics of gas atomization and rapid solidification process and the performance requirements of magnetic abrasive. The new iron-based SiC spherical composite magnetic abrasive is prepared successfully when the machining parameters and the composition proportion of the raw materials are controlled properly. Its morphology, microstructure, phase composition are characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD) analysis. The MAF tests on plate of mold steel S136 are carried out without grinding lubricant to assess the finishing performance and service life of this new SiC magnetic abrasive. The surface roughness(Ra) of the plate worked is rapidly reduced to 0.051 μm from an initial value of 0.372 μm within 5 min. The MAF test is carried on to find that the service life of this new SiC magnetic abrasive reaches to 155 min. The results indicate that this process presented is feasible to prepare the new SiC magnetic abrasive; and compared with previous magnetic abrasives, the new SiC spherical composite magnetic abrasive has excellent finishing performance, high processing efficiency and longer service life. The presented method to fabricate magnetic abrasive through gas atomization and rapid solidification presented can significantly improve the finishing performance and service life of magnetic abrasive, and provide a more practical approach for large-scale industrial production of magnetic abrasive.
基金supported by National Natural Science Foundation of China(No.51374040)the National Key Scientific Instrument and Equipment Development Project of China(No.2014YQ120351)
文摘Although single-pulse lasers are often used in traditional laser-induced breakdown spectroscopy (LIBS) measurements, their measurement outcomes are generally undesirable because of the low sensitivity of carbon in iron-based alloys. In this article, a double-pulse laser was applied to improve the signal intensity of carbon. Both the inter-pulse delay and the combination of laser wavelengths in double-pulse laser-induced breakdown spectroscopy (DP-LIBS) were optimized in our experiment. At the optimized inter-pulse delay, the combination of a first laser of 532 nm and a second laser of 1,064 nm achieved the highest signal enhancement. The properties of the target also played a role in determining the mass ablation enhancement in DP-LIBS configuration.
基金The financial support from the National Natural Science Foundation of China (20590361)the National Outstanding Young Scientists Foundation of China (20625620)
文摘A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characterized by using N2 physical adsorption, temperature-programmed reduction/desorption (TPR/TPD) and MSssbauer effect spectroscopy (MES) methods. The characterization results indicated that the BET surface area increases with increasing Al2O3 content and passes through a maximum at the Al2O3/Fe ratio of 10/100 (weight basis). After the point, it decreases with further increase in Al2O3 content. The incorporation of Al2O3 binder was found to weaken the surface basicity and suppress the reduction and carburization of iron-based catalysts probably due to the strong K-Al2O3 and Fe-Al2O3 interactions. Furthermore, the H2 adsorption ability of the catalysts is enhanced with increasing Al2O3 content. The FTS performances of the catalysts were tested in a slurry-phase continuously stirred tank reactor (CSTR) under the reaction conditions of 260 ℃, 1.5 MPa, 1000 h^-1 and molar ratio of H2/CO 0.67 for 200 h. The results showed that the addition of small amounts of Al2O3 affects the activity of iron-based catalysts to a little extent. However, with further increase of Al2O3 content, the FTS activity and water gas shift reaction (WGS) activity are decreased severely. The addition of appropriate Al2O3 do not affect the product selectivity, but the catalysts incorporated with large amounts of Al2O3 have higher selectivity for light hydrocarbons and lower selectivity for heavy hydrocarbons.
基金supported by the National Natural Science Foundation of China(Grant Nos.90922002 and 11190023)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.2013FZA3003)
文摘The second class of high-temperature superconductors (HTSCs), iron-based pnictides and chalcogenides, necessarily contain Fe2X2 ("X" refers to a pnictogen or a chalcogen element) layers, just like the first class of HTSCs which possess the essential CuO2 sheets. So far, dozens of iron-based HTSCs, classified into nine groups, have been discovered. In this article, the crystal-chemistry aspects of the known iron-based superconductors are reviewed and summarized by employing "hard and soft acids and bases (HSAB)" concept. Based on these understandings, we propose an alternative route to exploring new iron-based superconductors via rational structural design.
基金supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China(Grant Nos.2012CB921400,2011CB921802,and 2011CBA00112)
文摘Angle-resolved photoemission spectroscopy (ARPES) has played an important role in determining the band structure and the superconducting gap structure of iron-based superconductors. In this paper, from the ARPES perspective, we briefly review the main results from our group in recent years on the iron-based superconductors and their parent compounds, and depict our current understanding on the antiferromagnetism and superconductivity in these materials.
文摘The effect of copper and rare-earth elements on corrosion behavior of high silicon iron-based alloys in nitric acid was studied by means of static and loading current corrosion experiments.The anodic polarization curve was also made to discuss the corrosion mechanism.The examination on alloy microstructure and SEM corrosion pattern showed that when silicon content reached 14.5%,the Fe3Si phase appeared and the primary structure of the iron-base alloy was ferrite.When adding 4.57% copper in the iron alloy,its corrosion resistance in static diluted sulfuric acid was improved while its corrosion resistance and electrochemical corrosion properties in the nitric acid were decreased.In contrast,the addition of rare earth elements could improve the corrosion properties in all above conditions including in static diluted sulfuric acid and in nitric acid.
基金Project supported by CAS-Shanghai Science Research Center,China(Grant No.CAS-SSRC-YH-2015-01)the National Key R&D Program of China(Grant No.2017YFA0305400)+4 种基金the National Natural Science Foundation of China(Grant Nos.11674229,11227902,and 11604207)the EPSRC Platform Grant(Grant No.EP/M020517/1)Hefei Science Center,Chinese Academy of Sciences(Grant No.2015HSC-UE013)Science and Technology Commission of Shanghai Municipality,China(Grant No.14520722100)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB04040200)。
文摘Iron-based superconductor family FeX(X=S,Se,Te)has been one of the research foci in physics and material science due to their record-breaking superconducting temperature(FeSe film)and rich physical phenomena.Recently,FeS,the least studied Fe X compound(due to the difficulty in synthesizing high quality macroscopic crystals)attracted much attention because of its puzzling superconducting pairing symmetry.In this work,combining scanning tunneling microscopy and angle resolved photoemission spectroscopy(ARPES)with sub-micron spatial resolution,we investigate the intrinsic electronic structures of superconducting FeS from individual single crystalline domains.Unlike FeTe or FeSe,FeS remains identical tetragonal structure from room temperature down to 5 K,and the band structures observed can be well reproduced by our ab-initio calculations.Remarkably,mixed with the 1×1 tetragonal metallic phase,we also observe the coexistence of √5×√5 reconstructed insulating phase in the crystal,which not only helps explain the unusual properties of FeS,but also demonstrates the importance of using spatially resolved experimental tools in the study of this compound.
基金financially supported by the National Science Fund for Excellent Young Scholars of China (No. 52022111)the Distinguished Young Scholars of China (No. 51825403)the National Natural Science Foundation of China (Nos. 51634010, 51974379)。
文摘Between the two major arsenic-containing salts in natural water, arsenite(As(Ⅲ)) is far more harmful to human and the environment than arsenate(As(V)) due to its high toxicity and transportability. Therefore, preoxidation of As(Ⅲ) to As(V) is considered to be an effective means to reduce the toxicity of arsenic and to promote the removal efficiency of arsenic. Due to their high catalytic activity and arsenic affinity, iron-based functional materials can quickly oxidize As(Ⅲ) to As(V) in heterogeneous Fenton-like systems, and then remove As(V) from water through adsorption and surface coprecipitation. In this review, the effects of different iron-based functional materials such as zero-valent iron and iron(hydroxy) oxides on arsenic removal are compared, and the catalytic oxidation mechanism of As(Ⅲ) in heterogeneous Fenton process is further clarified. Finally, the main challenges and opportunities faced by iron-based As(Ⅲ) oxidation functional materials are prospected.
基金Supported by the Special Funds for Major State Basic Research Projects( No.G19990 64 80 0 ),the National NaturalScience Foundation of China( No.2 973 4141) ,and SKL EP ( 0 0 62 ) ,SINOPEC and CNPC.
文摘Polynorbornenes were synthesized in the presence of an iron based catalyst, 2,6-bis[1-(2,6-diisopropyl-phenylimino)ethyl]pyridine iron(Ⅱ) dichloride. The FTIR, 1H NMR and 13C NMR analysis results revealed that the structure of the obtained polynorbornenes consisted of vinyl addition polymer substructures without any ring-opening structures. The polymers were amorphous with a short-range order, displayed in the WAXD(wide angle X-ray diffraction) diagrams. The glass transition temperatures ranged from 200 to 400 ℃. The effects of the polymerization reaction conditions, such as Al/Fe molar ratio and toluene/CH_2Cl_2 volume ratio, on the activity, intrinsic viscosity and T_g were also studied.
基金supported by the Ministry of Science and Technology of China (Grant No. 2019YFA0308500)the Chinese Academy of Sciences (Grant Nos. XDB28000000 and YSBR-003)。
文摘Majorana zero modes(MZMs) are Majorana-fermion-like quasiparticles existing in crystals or hybrid platforms with topologically non-trivial electronic structures. They obey non-Abelian braiding statistics and are considered promising to realize topological quantum computing. Discovery of MZM in the vortices of the iron-based superconductors(IBSs)has recently fueled the Majorana research in a way which not only removes the material barrier requiring construction of complicated hybrid artificial structures, but also enables observation of pure MZMs under higher temperatures. So far,MZMs have been observed in iron-based superconductors including FeTe_(0.55)Se_(0.45),(Li_(0.84)Fe_(0.16))OHFe Se, Ca KFe_(4)As_(4),and Li Fe As. In this topical review, we present an overview of the recent STM studies on the MZMs in IBSs. We start with the observation of MZMs in the vortices in FeTe_(0.55)Se_(0.45)and discuss the pros and cons of FeTe_(0.55)Se_(0.45) compared with other platforms. We then review the following up discovery of MZMs in vortices of Ca KFe_(4)As_(4), impurity-assisted vortices of Li Fe As, and quantum anomalous vortices in FeTe_(0.55)Se_(0.45), illustrating the pathway of the developments of MZM research in IBSs. Finally, we give perspective on future experimental works in this field.
基金supported by the National Natural Science Foundation of China(Grant Nos.11074304 and 11222433)the National Basic Research Program of China(Grant Nos.2010CB923004 and 2011CBA00112)
文摘The newly discovered iron-based superconductors have triggered renewed enormous research interest in the condensed matter physics community. Nuclear magnetic resonance (NMR) is a low-energy local probe for studying strongly correlated electrons, and particularly important for high-Tc superconductors. In this paper, we review NMR studies on the structural transition, antiferromagnetic order, spin fluctuations, and superconducting properties of several iron-based high-Tc superconductors, including LaFeAsOl_xFx, LaFeAsOl_x, BaFe2As2, Bal_xKxFe2As2, Cao.23Nao.67Fe2As2, BaFe2(Asl_xPx)2, Ba(Fel_xRux)2As2, Ba(Fel_xCox)2As2, Lil+xFeAs, LiFel_xCoxAs, NaFeAs, NaFel_xCoxAs, KyFe2_xSe2, and (T1,Rb)yFe2_xSe2.
基金Project(50634060) supported by the National Natural Science Foundation of China Project(50721003) supported by the Creative Research Group of National Natural Science Foundation of China
文摘The microstructures and mechanical properties of an iron-based alloy (Fe-13Cr-3W-0.4Ti-0.25Y-0.30O) prepared by mechanical alloying were investigated with scanning electron microscope,optical microscope,X-ray diffractometer and hardness tester.The results show that the particle size does not decrease with milling time because serious welding occurs at 144 h.The density of the alloy sintered at 1 523 K is affected by the particle size of the powder.Finer particles lead to a high sintered density,while the bulk density by using particles milled for 144 h is as low as 70%.In the microstructures of the annealed alloy,large elongated particles and fine equiaxed grains can be detected.The elongated particle zone has a higher microhardness than the equiaxed grain area in the annealed alloys due to the larger residual strain and higher density of the precipitated phase.
文摘The effects of Mg,La and Ca promoters on primary and secondary CO2 and H2O formation pathways during Fischer-Tropsch synthesis on precipitated Fe/Cu/SiO2 catalysts are investigated.The chemisorbed oxygen atoms in the primary pathway formed in the CO dissociation steps reacted with co-adsorbed hydrogen or carbon monoxide to produce H2O and CO2,respectively.The secondary pathway was the water-gas shift reaction.The results indicated that the CO2 production led to an increase in both primary and secondary pathways,and H2O production decreased when surface basicity of the catalyst increased in the order Ca 〉 Mg 〉 La.
文摘The preparation of the iron-based catalysts promoted by cobalt with a small amount of copper and aluminum for the high temperature shift reaction (HTS) with different sequences of adding catalyst raw materials during neutralization and precipitation was investigated. XRD, BET and particle size distribution (PSD) were used to characterize the prepared catalysts. It was found that the catalyst crystals were all γ-Fe2O3, and the intermediate of the catalyst after aging was Fe3O4. The crystallographic form of the catalyst and its intermediate was not affected by the addition sequence in the neutralization and precipitation process. The results showed that the specific surface area and the particle size of the catalysts depended on the addition sequence to the mother liquor. Cobalt with a small amount of copper and aluminum could increase the specific surface area and decrease the particle size of catalysts.
基金Supported by the National Basic Research Program of China under Grant Nos 2011CBA00100 and 2012CB821404the Project of International Team on Superconductivity and Novel Electronic Materials of Chinese Academy of Sciences
文摘We report a systematic investigation on c-axis point-contact Andreev reflection (PCAR) in BaFe2-xNixAs2 superconducting single crystals from underdoped to overdoped regions (0.075≤ x ≤0.15). At low temperatures, an in-gap sharp peak at low-bias voltage is observed in PCAR for overdoped samples, in contrast to the case of underdoped junctions, in which an in-gap plateau is observed. The variety of the conductance spectra with doping can be well described by using a generalized Blonder-Tinkham-Klapwijk formalism with an angle-dependent gap. This gap shows a clear crossover from a nodeless in the underdoped side to a nodal feature in the overdoped region. This result provides evidence of the doping-induced evolution of the superconducting order parameter when the inter-pocket and intra-pocket scattering are tuned through doping, as expected in the s± scenario.