期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Genetic Types and Metallogenic Model for the Polymetallic Copper–Gold Deposits in the Tongling Ore District, Anhui Province, Eastern China 被引量:6
1
作者 FU Zhongyang XU Xiaochun +4 位作者 HE Jun FAN Ziliang XIE Qiaoqin DU Jianguo CHEN Fang 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2019年第1期88-110,共23页
The Tongling ore district is one of the most economically important ore areas in the Middle–Lower Yangtze River Metallogenic Belt, eastern China. It contains hundreds of polymetallic copper–gold deposits and occurre... The Tongling ore district is one of the most economically important ore areas in the Middle–Lower Yangtze River Metallogenic Belt, eastern China. It contains hundreds of polymetallic copper–gold deposits and occurrences. Those deposits are mainly clustered(from west to east) within the Tongguanshan, Shizishan, Xinqiao, Fenghuangshan, and Shatanjiao orefields. Until recently, the majority of these deposits were thought to be skarn-or porphyry–skarn-type deposits; however there have been recent discoveries of numerous vein-type Au, Ag, and Pb-Zn deposits that do not fall into either of these categories. This indicates that there is some uncertainty over this classification. Here, we present the results of several systematic geological studies of representative deposits in the Tongling ore district. From investigation of the ore-controlling structures, lithology of the host rock, mineral assemblages, and the characteristics of the mineralization and alteration within these deposits, three genetic types of deposits(skarn-, porphyry-, and vein-type deposits) have been identified. The spatial and temporal relationships between the orebodies and Yanshanian intrusions combined with the sources of the ore-forming fluids and metals, as well as the geodynamic setting of this ore district, indicate that all three deposit types are genetically related each other and constitute a magmatic–hydrothermal system. This study outlines a model that relates the polymetallic copper–gold porphyry-, skarn-, and vein-type deposits within the Tongling ore district. This model provides a theoretical basis to guide exploration for deep-seated and concealed porphyry-type Cu(–Mo, –Au) deposits as well as shallow vein-type Au, Ag, and Pb–Zn deposits in this area and elsewhere. 展开更多
关键词 polymetallic copper–gold deposits genetic types METALLOGENIC model magmatic–hydrothermal system TONGLING ore district Anhui Province
下载PDF
Ore Genesis for Stratiform Ore Bodies of the Dongfengnanshan Copper Polymetallic Deposit in the Yanbian Area, NE China:Constraints from LA-ICP-MS in situ Trace Elements and Sulfide S–Pb Isotopes 被引量:4
2
作者 LU Siyu REN Yunsheng +3 位作者 YANG Qun SUN Zhenming HAO Yujie SUN Xinhao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第5期1591-1606,共16页
The Dongfengnanshan Cu polymetallic deposit is one representative deposit of the Tianbaoshan ore district in the Yanbian area, northeast(NE) China. There occur two types of ore bodies in this deposit, the stratiform o... The Dongfengnanshan Cu polymetallic deposit is one representative deposit of the Tianbaoshan ore district in the Yanbian area, northeast(NE) China. There occur two types of ore bodies in this deposit, the stratiform ore bodies and veintype ones, controlled by the Early Permian strata and the Late Hercynian diorite intrusion, respectively. Due to the ambiguous genetic type of the stratiform ore bodies, there has been controversy on the relationship between them and veintype ore bodies. To determine the genetic type of stratiform ore bodies, laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) in situ trace elements and S–Pb isotope analysis have been carried on the sulfides in the stratiform ore bodies. Compared with that in skarn, Mississippi Valley-type(MVT), and epithermal deposits, sphalerite samples in the stratiform ore bodies of the Dongfengnanshan deposit are significantly enriched in Fe, Mn, and In, while depleted in Ga, Ge, and Cd, which is similar to the sphalerite in volcanic-associated massive sulfide(VMS) deposits. Co/Ni ratio of pyrrhotites in the stratiform ore bodies is similar to that in VMS-type deposits. The concentrations of Zn and Cd of chalcopyrites are similar to those of recrystallized VMS-type deposits. These characteristics also reflect the intermediate ore-forming temperature of the stratiform ore bodies in this deposit. Sulfur isotope compositions of sulfides are similar to those of VMS-type deposits, reflecting that sulfur originated from the Permian Miaoling Formation. Lead isotope compositions indicate mixed-source for lead. Moreover, the comparison of the Dongfengnanshan stratiform ore bodies with some VMStype deposits in China and abroad, on the trace elements and S–Pb isotope characteristics of the sulfides reveals that the stratiform ore bodies of the Dongfengnanshan deposit belong to the VMS-type, and have closely genetic relationship with the early Permian marine volcanic sedimentary rocks. 展开更多
关键词 LA-ICP-MS in situ trace element S-Pb isotope VMS-type STRATIFORM orebodies Dongfengnanshan copper polymetallic deposit Tianbaoshan ore district
下载PDF
Metallogenic Dynamics of Zhashui Ag-Pb Polymetallic Ore Deposit in Shaanxi,China
3
作者 Wei Junhao Li Jianwei Wang Siyuan(Faculty of Earth Resources, China University of Geosciences, Wuhan 430074)Shi Sen(Geological Investigation Bureau of MGMR, Beijing 100081) 《Journal of Earth Science》 SCIE CAS CSCD 1996年第2期178-182,共5页
Zhashui Ag-Pb polymetallic ore deposit is located in northern Qinling geosyncline. In this paper, its geological features and metallogenic background are introduced. The volcanic dynamics,physical-chemical conditions ... Zhashui Ag-Pb polymetallic ore deposit is located in northern Qinling geosyncline. In this paper, its geological features and metallogenic background are introduced. The volcanic dynamics,physical-chemical conditions of metallogeny and ore-forming experimental simulation are discussed in detail. Based on the existence of paleovolcanic activity, the protolith characters and geochemistry of ore-bearing rock series, the authors study the law of volcanic activity in Middle Devonian period. The Physical-chemical conditions of metallogeny. including temperature, pressure, pH and Eh of mineralizing solution, are also determined. The evolution of salinity, f(O2), pH, M (H2S), M(SO2-4) (M is mole fraction of certain component ), t (temperature) and a(ionic activity)of mineralizing solution suggests that the mineralization was a long-term dynamic process. Finally, the metallogenic pattern is established. 展开更多
关键词 Ag-Pb polymetallic ore deposit metallogenic dynamics metallogenic model.
下载PDF
A PRELIMINARY STUDY ON METALLOGENESIS OF THE LAMASU COPPER POLYMETALLIC ORE DEPOSIT, XINJIANG
4
作者 LAI Jian qing, PENG Sheng lin, SHAO Yong jun, WANG He (Institute of Geology, Central South University, Changsha 410083, China) 《Geotectonica et Metallogenia》 2001年第1期156-159,共4页
The Lamasu copper polymetallic mineralized region lies in the south of Wenquan County, Xinjiang and in the Northwest lakeside of the Sailimu Lake. Seen from the geotectonic position, it belongs to North Tianshan geodo... The Lamasu copper polymetallic mineralized region lies in the south of Wenquan County, Xinjiang and in the Northwest lakeside of the Sailimu Lake. Seen from the geotectonic position, it belongs to North Tianshan geodome system, Tianshan diwa region, Central Asian crustobody. Copper and zinc polymetallic ore bodies had been formed in the skarn of the contact, between the metamophic carbonate rocks of the Kuximqiek Group, Jixian System and early mid Varisean acidic rockbodies. The formation of the ore deposit was the result of the successive activities of the crust and mantle and the tectonic and magmatic activities. 展开更多
关键词 ROCK A PRELIMINARY STUDY ON METALLOGENESIS OF THE LAMASU COPPER polymetallic ore deposit XINJIANG ore
下载PDF
Late Mesozoic Ore-forming Events in the Ningwu Ore District, Middle-Lower Yangtze River Polymetallic Ore Belt, East China: Evidence from Zircon U-Pb Geochronology and Hf Isotopic Compositions of the Granodioritic Stocks 被引量:12
5
作者 DUAN Chao LI Yanhe +3 位作者 HOU Kejun YUAN Shunda LIU Jialin ZHANG Cheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第3期719-736,共18页
Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle-lower Yangtze River polymetall... Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle-lower Yangtze River polymetallic ore belt, East China. Two types of Late Mesozoic magmatic rocks are exposed: one is dioritic rocks closely related to iron mineralization as the hosted rock, and the other one is granodioritic (-granitic) rocks that cut the ore bodies. To understand the age of the iron mineralization and the ore-forming event, detailed zircon U-Pb dating and Hf isotope measurement were performed on granodioritic stocks in the Washan, Gaocun-Nanshan, Dongshan and Heshangqiao iron deposits in the basin. Four emplacement and crystallization (typically for zircons) ages of granodioritic rocks were measured as 126.1±0.5 Ma, 126.8±0.5 Ma, 127.3±0.5 Ma and 126.3±0.4 Ma, respectively in these four deposits, with the LA-MC-ICP-MS zircon U-Pb method. Based on the above results combined with previous dating, it is inferred that the iron deposits in the Ningwu Cretaceous basin occurred in a very short period of 131-127 Ma. In situ zircon Hf compositions of εHf(t) of the granodiorite are mainly from -3 to -8 and their corresponding 176Hf/177Hf ratio are from 0.28245 to 0.28265, indicating similar characteristics of dioritic rocks in the basin. We infer that granodioritic rocks occurring in the Ningwu ore district have an original relationship with dioritic rocks. These new results provide significant evidence for further study of this ore district so as to understand the ore-forming event in the study area. 展开更多
关键词 Zircon U-Pb age Hf isotope porphyry iron deposit Ningwu ore district Middle–Lower Yangtze River polymetallic ore belt
下载PDF
Diversity of Mineralization and Spectrum of the Gejiu Superlarge Tin-Copper Polymetallic Deposit,Yunnan,China 被引量:10
6
作者 张寿庭 夏庆霖 +1 位作者 赵鹏大 高阳 《Journal of China University of Geosciences》 SCIE CSCD 2008年第4期363-370,共8页
The Gejiu (个旧) deposit is a superlarge tin-copper polymetallic ore-forming concentration area characterized by excellent metallogenic geological settings and advantageous ore-controlling factors. The deposit displ... The Gejiu (个旧) deposit is a superlarge tin-copper polymetallic ore-forming concentration area characterized by excellent metallogenic geological settings and advantageous ore-controlling factors. The deposit displays diverse mineralization properties due to different minerals and mineral deposit types. Based on the principal metallogenic factors, metallogenic mechanisms, mineralized components, and occurrence of mineral deposits or ore bodies, the Gejiu mineral district can be divided into 2 combinations of metallogenic series, 4 metallogenic series, 8 subseries, and 27 mineral deposit types. Spatial zonality is evident. The distribution regularity of the elements in both plane and section is Be-W, Sn (Cu, Mo, Bi, Be)-Sn, Pb, Ag-Pb, Zn around a granitic intrusion. The metallogenic epoch is mainly concentrated in the late Yanshanian. During this period, large-scale metallogenic processes related to movement caused by tectonics and magmatism occurred, and a series of magmatic hydrothermal deposits formed. The ore-forming processes can be divided into 4 stages: the silicate stage, the oxide stage, the sulphide stage, and the carbonate stage. Based on the orderliness and diversity (in terms of time, space, and genesis) of the mineralization, the authors have developed a comprehensive spectrum of ore deposits in the Gejiu area. This newly proposed diversity of mineralization and the spectrum developed in this work are useful not only for interpreting the genesis of the Gejiu deposit but also for improving mineral exploration in the area, and in particular, for finding large deposits. 展开更多
关键词 tin-copper polymetallic deposit mineralization diversity spectrum of ore deposit Gejiu
下载PDF
Metallogeny of the Baiyangping Lead-Zinc Polymetallic Ore Concentration Area, Northern Lanping Basin of Yunnan Province, China 被引量:5
7
作者 WANG Xiaohu SONG Yucai +3 位作者 ZHANG Hongrui LIU Yingchao PAN Xiaofei GUO Tao 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第4期1486-1507,共22页
The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of l... The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of large unique sediment-hosted Pb-Zn polymetallic deposits or ore districts, such as the Baiyangping ore concentration area which is one of the representative ore district. The Baiyangping ore concentration area can be divided into the east and west ore belts, which were formed in a folded tectogene of the India-Asia continental coUisional setting and was controlled by a large reverse fault. Field observations reveal that the Mesozoic and Cenozoic sedimentary strata were outcropped in the mining area, and that the orebodies are obviously controlled by faults and hosted in sandstone and carbonate rocks. However, the oreforming elements in the east ore belt are mainly Pb-Zn -Sr-Ag, while Pb-Zn-Ag-Cu-Co elements are dominant in the west ore belt. Comparative analysis of the C-O-Sr-S-Pb isotopic compositions suggest that both ore belts had a homogeneous carbon source, and the carbon in hydrothermal calcite is derived from the dissolution of carbonate rock strata; the ore- forming fluids were originated from formation water and precipitate water, which belonged to basin brine fluid system; sulfur was from organic thermal chemical sulfate reduction and biological sulfate reduction; the metal mineralization material was from sedimentary strata and basement, but the difference of the material source of the basement and the strata and the superimposed mineralization of the west ore belt resulted in the difference of metallogenic elements between the eastern and western metallogenic belts. The Pb-Zn mineralization age of both ore belts was contemporary and formed in the same metaliogenetic event. Both thrust formed at the same time and occurred at the Early Oligocene, which is consistent with the age constrained by field geological relationship. 展开更多
关键词 eastern Tethyan metallogenic domain Lanping Basin Baiyangping ore concentration area lead-zinc polymetallic ore deposit genesis of deposit
下载PDF
GEOLOGICAL FEATURES AND ORE- FORMING MODEL OF THE SHIZHUYUAN W-SN-MO-BI ORE DEPOSIT,HUNAN PROVINCE,CHINA
8
作者 YIN Bing (The Shizhuyuan Mine,Chenzhou 423037,Hunan,China) 《Geotectonica et Metallogenia》 2000年第1期75-78,共4页
The Shizhuyuan W,Sn,Mo and Bi polymetallic ore deposit is one of the world famous superlarge ore deposits.The paper briefly introduced the geological setting and features of the ore deposit.Further,an ore- forming mo... The Shizhuyuan W,Sn,Mo and Bi polymetallic ore deposit is one of the world famous superlarge ore deposits.The paper briefly introduced the geological setting and features of the ore deposit.Further,an ore- forming model was put forward at the end of the paper. 展开更多
关键词 SHIZHUYUAN polymetallic ore deposit GEOLOGICAL feature ore- FORMING model
下载PDF
Geological characteristics and mineralization setting of the Zhuxi tungsten(copper) polymetallic deposit in the Eastern Jiangnan Orogen 被引量:25
9
作者 CHEN GuoHua SHU LiangShu +2 位作者 SHU LiMin ZHANG Cheng OUYANG YongPeng 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第4期803-823,共21页
The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contac... The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contact zone between Yanshanian granites and Carboniferous-Permian limestone. Granites related to this mineralization mainly include equigranular, middle- to coarse-grained granites and granitic porphyries. There are two mineralization types: skarn scheelite(copper) and granite scheelite mineralization. The former is large scale and has a high content of scheelite, whereas the latter is small scale and has a low content of scheelite. In the Taqian-Fuchun Basin, its NW boundary is a thrust fault, and the SE boundary is an angular unconformity with Proterozoic basement. In Carboniferous-Permian rock assemblages, the tungsten and copper contents in the limestone are both very high. The contents of major elements in granitoids do not differ largely between the periphery and the inside of the Zhuxi ore deposit. In both areas, the values of the aluminum saturation index are A/CNK>1.1, and the rocks are classified as potassium-rich strongly peraluminous granites. In terms of trace elements, compared to granites on the periphery of the Zhuxi ore deposit, the granites inside the Zhuxi ore deposit have smaller d Eu values, exhibit a significantly more negative Eu anomaly, are richer in Rb, U, Ta, Pb and Hf, and are more depleted in Ba, Ce, Sr, La and Ti, which indicates that they are highly differentiated S-type granites with a high degree of evolution. Under the influence of fluids, mineralization of sulfides is evident within massive rock formations inside the Zhuxi ore deposit, and the mean SO_3 content is 0.2%. Compared to peripheral rocks, the d Eu and total rare earth element(REE) content of granites inside the Zhuxi ore deposit are both lower, indicating a certain evolutionary inheritance relationship between the granites on the periphery and the granites inside the Zhuxi ore deposit. For peripheral and ore district plutons, U-Pb zircon dating shows an age range of 152–148 Ma. In situ Lu-Hf isotope analysis of zircon in the granites reveals that the calculated e_(Hf)(t) values are all negative, and the majority range from -6 to -9. The T_(DM2) values are concentrated in the range of 1.50–1.88 Ga(peak at 1.75 Ga), suggesting that the granitic magmas are derived from partial melting of ancient crust. This paper also discusses the metallogenic conditions and ore-controlling conditions of the ore district from the perspectives of mineral contents, hydrothermal alteration, and ore-controlling structures in the strata and the ore-bearing rocks. It is proposed that the Zhuxi ore deposit went through a multistage evolution, including oblique intrusion of granitic magmas, skarn mineralization, cooling and alteration, and precipitation of metal sulfides. The mineralization pattern can be summarized as "copper in the east and tungsten in the west, copper at shallow-middle depths and tungsten at deep depths, tungsten in the early stage and copper in the late stage". 展开更多
关键词 Tungsten(copper) polymetallic deposit Late Mesozoic granites Carboniferous-Permian carbonate rocks Skarn mineralization Zhuxi ore deposit Eastern Jiangnan Orogen
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部