Based on heavy mineral data in core samples from eleven drillings, supplemented by paleontological, element geochemical and seismic data, the evolution of sediment provenance and environment in the Qiongdongnan Basin ...Based on heavy mineral data in core samples from eleven drillings, supplemented by paleontological, element geochemical and seismic data, the evolution of sediment provenance and environment in the Qiongdongnan Basin (QDNB) was analysed. The results show that the basement in the QDNB was predominantly composed of terrigenous sediments. Since the Oligocene the QDNB has gradually undergone transgressions and evolution processes in sedimentary environment from terrestrial-marine transitional to littoral-neritic, neritic, and bathyal roughly. The water depth showed a gradually increasing trend and was generally greater in the southern region than that in the northern region in the same time. With changes in sedimentary environment, provenances of the strata (from the Yacheng Formation to the Yinggehai Formation) showed principal characteristics of multi-sources, evolving from autochthonous source, short source to distant source step by step. During the Early Oligocene, the sediments were mainly proximal basaltic pyroclastic source and adjacent terrigenous clastic source, afterwards were becoming distant terrigenous clastic sources, including Hainan Island on the north, Yongle Uplift on the south, Shenhu Uplift on the northeast, the Red River System on the northwest and Indochina Peninsula on the southwest, or even a wider region. The Hainan Island provenance began to develop during the Early Oligocene and has become a main provenance in the QDNB since the Middle Miocene. The provenances from Yongle Uplift and Shenhu Uplift most developed from the Late Oligocene to the Early Miocene and gradually subsided during the Middle Miocene. During the Late Miocene, as a main source of sediments filled in the central canyon, the Red River System provenance added to the QDNB massively, whose impact terminated at the end of the Pliocene. The western Yinggehai Basin (YGHB) provenance derived from Indochina Peninsula had developed from the Pliocene on to the Pleistocene. In addition, the material contribution of marine authigenous source to the basin (especially to the southern region) could not be ignored.展开更多
The heavy mineral compositions of the sediments in core D04 with a length of 20.2 m from the muddy area outside the Oujiang Estuary along the coast of Zhejiang-Fujian Provinces have been analyzed. Core D04 can be divi...The heavy mineral compositions of the sediments in core D04 with a length of 20.2 m from the muddy area outside the Oujiang Estuary along the coast of Zhejiang-Fujian Provinces have been analyzed. Core D04 can be divided into three units: DU1(0–7.4 m), DU2(7.4–11.4 m) and DU3(11.4–20.2 m). The results showed that the heavy minerals are authigenic pyrite(65.6%)– hornblende(16.0%) – epidote(4.6%) assemblages. The core sediments are mainly composed of clayey silt, which belongs to the clinoform deposit formed since 5.8 kyr, indicating a weak hydrodynamic environment. The deposition rates changed in the trend of high-low-high upward. Quantitative analysis shows that the core sediments were mainly from the suspended sediments of the Changjiang(Yangtze) River, accounting for 79.2%, with only 10.0% from Oujiang, and 10.8% from other provenance. The Oujiang-derived sediments were gradually increased from the bottom unit DU3(3.1%) to the top unit DU1(17.8%), but the Changjiang-derived sediments were gradually decreased. The source changes are closely related to the development of Yangtze River Delta and Wenzhou Bay, climate changes and human activities. During the period of 2.1–3.7 kyr, the sediment supply was greatly reduced due to the poor reclamation capacity of the river basins, resulting in a low deposition rate. Since 2 kyr, the enhancement of human activities in the Yangtze River Basin and the Oujiang River Basin led to more soils to be eroded and transported to the study area. Due to the short distance of the site of core D04 from the Oujiang River mouth, the study area received more Oujiang-derived sediments when upper unit(DU1) deposited than the lower units(DU2 and DU3).展开更多
Individual and combined effects of Cu, Pb, Zn and Cd on N mineralization, urease and phosphatase were examined in a Typic Udic Ferrisol in laboratory by employing an uniform design and a single factor design.Soil poll...Individual and combined effects of Cu, Pb, Zn and Cd on N mineralization, urease and phosphatase were examined in a Typic Udic Ferrisol in laboratory by employing an uniform design and a single factor design.Soil pollution caused by heavy metals inhibited N mineralization (No value) and urease and phosphatase activities. The combined pollution of metals alleviated their toxicity to N mineralization to some extent,whereas aggravated the toxicity to urease and phosphatase. Phosphorous application could mitigate the toxic effect of heavy metals on phosphatase activities, while alleviating effect of N application on the toxicity of heavy metals to urease was inconsistent. However, the mitigating effect of the fertilizers was limited in heavily polluted soils.展开更多
The heavy mineral sands of Senegal are exploited to extract titanium oxides and zircon. Mining is carried out first by means of a floating dredge and concentration plant which produce</span><span style="...The heavy mineral sands of Senegal are exploited to extract titanium oxides and zircon. Mining is carried out first by means of a floating dredge and concentration plant which produce</span><span style="font-family:Verdana;">s</span><span style="font-family:""><span style="font-family:Verdana;"> a heavy mineral concentrate (HMC) containing on average 78% titanium oxides, 11% zircon and a set of silicate and alumino-silicate minerals. This heavy mineral concentrate is then treated by gravity, magnetic and electrostatic separation to produce titanium oxide concentrates (ilmenite, leucoxene, rutile) and three varieties of zircon concentrates (Premium zircon, standard zircon and medium grade zircon standard). In this study, we describe the various mineral concentrates in terms of mineralogical assemblages, and textural variability within grains, using Qemscan and Scanning Electron Microscopy. The titanium oxide concentrates are differentiated by their TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> content and vary from ilmenite to rutile. The zircon concentrates are characterized by the presence of impurities in the zircons, which consist in numerous inclusions of titanium oxides and silicate minerals. The mineralogical characteristics determined by scanning electron microscopy and by Qemscan showed great variability within the grains themselves. Heavy minerals contain many mineral inclusions and show strong chemical zoning.展开更多
In this paper the seven-step continuous extracting method was employed in the studyof chemical forms of the six heavy metals Co, Zn, Pb, Cu, Cr and Mn. The result shows thatthe metals in the laterite are present in th...In this paper the seven-step continuous extracting method was employed in the studyof chemical forms of the six heavy metals Co, Zn, Pb, Cu, Cr and Mn. The result shows thatthe metals in the laterite are present in the chemical form of crystalline iron oxides andresidues, and they are transformed toward organic and exchangeable forms in the surface soil.Linear regression analysis indicates that the above heavy metals have a positive correlation withthe crystalline iron oxide minerals. The crystalline iron oxide minerals have a very importantrole to play in the enrichment of heavy metals, especially the solid components in the laterite.展开更多
Fifteen beach sand samples were collected from a depth of 1mt at different locations of the Astaranga beach, Puri with an interval of 300 mts. The beach sand samples were studied for heavy mineral concentration at dif...Fifteen beach sand samples were collected from a depth of 1mt at different locations of the Astaranga beach, Puri with an interval of 300 mts. The beach sand samples were studied for heavy mineral concentration at different location points and were subjected to scanning electron microscope studies for the mineral ilmenite. The percentage of total heavy mineral in Astaranga beach varies from 16.42% to 24.47%. The important minerals are ilmenite, rutile, zircon, sillimanite, garnet, monazite, pyroxene and others. For all samples a set of sieves bearing ASTM nos. 30, 40, 60, 80, 100, 120, 140, 170 and 200 corresponding to 0.59 mm, 0.42 mm, 0.25 mm, 0.177 mm, 0.149 mm, 0.125 mm, 0.105 mm, 0.088 mm and 0.074 mm respectively were used to separate different size fractions. The sieve mesh sizes vary from 0.59 mm to 0.74 mm. It was observed that maximum concentration of heavies was confined to +200 ASTM sieve or 0.74 mm. The total average heavy mineral concentration and light mineral concentration was found to be 20.07% and 79.49% respectively. The concentration percentage of different heavy minerals varied from higher to lower in the order like ilmenite, zircon, sillimanite, garnet, rutile, pyroxene, monazite and others. The ilmenite mineral in this area is found to have altered to secondary phases like pseudorutile, leucoxene and rutile along the fractures, cavities and grain boundaries. The alteration condition was observed as streaks, irregular patches, bands, and rim like structures around the ilmenite grains. Detailed study of alteration in ilmenite was carried out by Energy Dispersive Spectrometer (EDS) attached to Scanning Electron Microscope. The potentialities of heavies found at different locations of the Astaranga beach suggested a good source for the exploration. The alteration of the mineral ilmenite and high concentration of heavy minerals clearly pointed to the sedimentary environment and mechanical concentration process due to repeated wave action.展开更多
Gravity, magnetic and electrostatic separation methods allowed to obtain different titanium oxide concentrates (ilmenite, leucoxene, rutile) and different varieties of zircon concentrates (premium zircon, standard zir...Gravity, magnetic and electrostatic separation methods allowed to obtain different titanium oxide concentrates (ilmenite, leucoxene, rutile) and different varieties of zircon concentrates (premium zircon, standard zircon, medium grade zircon standard) from Senegal’s heavy mineral sands. During mining separation, monazite, which is a paramagnetic mineral, was found in a non-negligible concentration of 0.57 wt% on average in the medium grade zircon standard which also contains 37.96 wt% zircon and 44.46 wt% titanium oxides. Magnetic and gravity separation tests were carried out on the Medium grade zircon standard (MGZS) to produce a monazite concentrate at Eramet Ideas laboratory. Magnetic separation at 1.5 teslas intensity resulted in the recovery of 94.8% of the monazite from the MGZS. Gravity separation also recovered 76.6% of the monazite from the MGZS. The combination of these two treatment methods can thus produce three concentrates from MGZS (a monazite concentrate, a zircon concentrate, and a titanium oxide concentrate).展开更多
Correspondence analysis and fuzzy C-means cluster methods were used to divide the stratigraphy of heavy mineral assemblages, and the sediment sources and depositional dynamics of the environment reconstructed. The ass...Correspondence analysis and fuzzy C-means cluster methods were used to divide the stratigraphy of heavy mineral assemblages, and the sediment sources and depositional dynamics of the environment reconstructed. The assemblages were taken from marine sediments from the late Pleistocene to the Holocene in Core Q43 situated on the outer shelf of the East China Sea. Based on the variable boundaries of the mineral assemblage at 63 and 228 cmbsf (cm below sea floor), the core might have previously been divided into three sediment strata marked with units Ⅰ, Ⅱ and Ⅲ, which would be consistent with the divided sediment stratum of the core using minor element geochemistry. The downcore distribution of heavy minerals divided the sedimentary sequence into three major units, which were further subdivided into four subunits. The interval between 0 and 63 cmbsf of the core (unit Ⅰ), which spans the Holocene and the uppermost late Pleistocene, is characterized by a hornblende-epidote-pyroxene assemblage, and contains relatively a smaller amount of schistic mineral and authigenic pyrite. In comparison, the interval between 63 and 228 cmbsf (unit Ⅱ), is representative of the Last Glacial Maximum (LGM), and features a hornblende-epidote-magnetite-ilmenite assemblage containing the highest concentrations of heavy minerals and opaque minerals. However, the interval between 228 and 309 cmbsf (unit Ⅲ), which spans the subinterglacial period, is characterized by a hornblende-authigenic-pyrite-mica assemblage. Relative ratios of some heavy minerals can be used as tracers of clastic sediment sources. The lower part of the sediment core shows the highest magnetite/ilmenite ratio and relatively high hornblende/augite and hornblende/epidote ratios. The middle core shows the highest hornblende/augite and hornblende/epidote ratios, and the lowest magnetite/ilmenite ratio. The upper part exhibits a slightly higher magnetite/ilmenite ratio, and also the lowest hornblende/augite and hornblende/epidote ratios. The distribution of the mineral ratio is consistent with stratigraphic division in heavy mineral data using correspondence analysis and fuzzy C-means clustering. Variations in heavy mineral association and mineral ratio in core Q43 revealed changes in provenance and depositional environment of the southern outer shelf of the East China Sea since the late Pleistocene, well corresponding to interglacial and glacial cycles.展开更多
Heavy mineral petrographic and geochemical compositions (major and trace/rare earth elements)?of sandstones obtained from the Oligocene-Miocene Ogwashi-Asaba Formation, Niger Delta were studied to determine their prov...Heavy mineral petrographic and geochemical compositions (major and trace/rare earth elements)?of sandstones obtained from the Oligocene-Miocene Ogwashi-Asaba Formation, Niger Delta were studied to determine their provenance, source area weathering conditions and tectonic setting. The heavy mineral suite (opaque minerals, zircon, tourmaline, and rutile) revealed that the sandstones are mineralogically mature and implied rapid disintegration and chemical decomposition of sediments mostly of recycled orogen. The sandstones were geochemically classified as Fe-sand and partly quartz arenitic. Chemical Index of Alteration and Chemical Index of Weathering values of 89.92% and 91.87% respectively suggest that the source region was predominantly felsic and was subjected to intense chemical weathering probably under tropical palaeoclimatic conditions with abundant rainfall that enhanced sediment recycling. Major element concentration discriminant plots also indicated that the sediments were derived from mixed sources (granitic, gneissic or recycled orogen) under passive margin setting. Chondrite normalized plot of the rare earth element pattern is marked by light rare earth element enrichment and negative Eu anomalies, interpreted to mean that provenance was mainly continental crustal rocks. Trace elemental ratios that are provenance diagnostic (La/Sc, Th/Sc, Cr/Th, La/Co, Th/Co, Th/Cr, Eu/Eu*, and Eu*) all point to sediments derived from felsic source and upper continental crust. The mixed provenance of the sandstones can be traced to the southwestern and southeastern Basement Complex (consisting of granites, gneisses, etc.) and sediments derived from the adjacent sedimentary basins (Anambra and Benue Trough).展开更多
According to tectonic position and mineral inclusions, supply resource in western Qaidamu basin is di- vided into the front of Aerjinshan mountain and the front of Qimantageshan mountain. The former is mainly composed...According to tectonic position and mineral inclusions, supply resource in western Qaidamu basin is di- vided into the front of Aerjinshan mountain and the front of Qimantageshan mountain. The former is mainly composed of zircon, garnet inclusions, indicating that its mother rocks are mainly metamorphic rocks. Gas and zircon, iron ore, carbon grain inclusions is common in the front of Qimantage mountain, indicating that its mother rock are mainly magmatite and mixed metamorphic rocks. The supply resource is abundant and tectonic movement is active in the joint of the two mountains. The western Qaidamu basin is further divided into 6 heavy mineral sub-regions according to their features of association and stable coefficient of heavy mineral. They are approximately corresponding to their sedimentary environment. Of the 6 sub-regions, the unstable region is corresponding to fluvial fan, middle stable re- gion is corresponding to river-alluvial plain-delta, stable region is corresponding to river-alluvial plain -delta-offshore. The fragment transported distance is presumed based on stable coefficient. In vertical, stable coefficient of heavy min- eral becomes small from Xiaganchai formation to Xiayoushashan formation, indicating that the supply resource be- came nearer and nearer.展开更多
Heavy minerals with densities higher than 2.8 g.cm-3 are generally considered minor components of sand or sandstone,typically forming 1%of the weight in the samples(Mange and Wright,2007).Heavy-mineral analysis is an ...Heavy minerals with densities higher than 2.8 g.cm-3 are generally considered minor components of sand or sandstone,typically forming 1%of the weight in the samples(Mange and Wright,2007).Heavy-mineral analysis is an effective tool for studying the sedimentary provenance of siliciclastic rocks,reconstructing sedimentary sources to sink routes,subdividing and correlating non-fossiliferous siliciclastic strata.展开更多
Environmental magnetic research on beaches and shoreline processes is limited.Therefore,we carried out environmental magnetic studies on the heavy mineral-enriched,dark-reddish sands on Cedar Beach of western Lake Eri...Environmental magnetic research on beaches and shoreline processes is limited.Therefore,we carried out environmental magnetic studies on the heavy mineral-enriched,dark-reddish sands on Cedar Beach of western Lake Erie(41.68°N,82.40°W).Magnetite has been identified as the dominant magnetic mineral of these sands.This study reveals a spatial variation in concentration of magnetite particles,distribution of展开更多
The northern section of the UAE is bordered by the Gulf of Oman’s northern extension (East Coast) and Arabian Gulf’s Eastern extension (northern West Coast). Unlike the rest, the coastline of this section is more or...The northern section of the UAE is bordered by the Gulf of Oman’s northern extension (East Coast) and Arabian Gulf’s Eastern extension (northern West Coast). Unlike the rest, the coastline of this section is more or less faced by mountainous areas of various rock types. The beach sands a long this coastline at both sides (East and northern-West) signify some heavy minerals concentration of an important consideration.展开更多
In this paper, we analyzed the grain size and heavy mineral compositions of 52 surface sediment samples collected from the Kompong Som Bay of Cambodia and the adjacent rivers to depict the marine sedimentary environme...In this paper, we analyzed the grain size and heavy mineral compositions of 52 surface sediment samples collected from the Kompong Som Bay of Cambodia and the adjacent rivers to depict the marine sedimentary environments and transport processes. Heavy minerals in sediments are dominated by authigenic pyrite, siderite, and tourmaline, with average percentages of 36.52%, 29.02%, and 10.94%, respectively. Two provinces can be divided according to the spatial similarity of minerals. The sediments from Province I, covered by silt grains in the northern bay, are characterized by autogenic pyrite, indicating a weakly reducing environment;whereas in Province II, covered by sand grains in the southern bay, the siderite-tourmaline-authigenic pyrite-zircon-hornblende assemblage occurs, indicating a mild reducing environment and locally oxidizing environment. Most of the sediments in the Kompong Som Bay are introduced from the Preak Piphot River and Srae Ambel River, except that some of them in the south areas come from coastal erosion. Generally, the sediments are difficult to be transported because of the low sediment loads entering the sea and weak hydrodynamic conditions. However, they are transported from the north to the south during the tide ebbing when the hydrodynamic force is much stronger. The sediment distribution and transport patterns are controlled by many factors, including submarine topography, hydrodynamic conditions, the southwest monsoon, land contours, and sediment supply.展开更多
The present work deals with the geochemical and heavy mineral characteristics studies of sediments of Gosthani river estuary. The aim of study is to determine the provenance, establish the depositional environment and...The present work deals with the geochemical and heavy mineral characteristics studies of sediments of Gosthani river estuary. The aim of study is to determine the provenance, establish the depositional environment and spatial variability of sediment. From the study it is found that the sediment of Gosthani river contains heavy minerals that consist of Rutile, Garnet, Sillimanite, Staurolite, Monazite, Zercon, Pyroxenes, Epidote, Amphiboles and Opaques minerals. The lesser abundant heavy minerals are amphiboles, zircon, monazite, rutile, staurolite, epidote. These heavy minerals indicate that the sediments were essentially derived from metamorphic provenance varying from medium to high grade and partly from crystalline igneous rocks. Well rounded monazites come from Eastern Ghats. This is based on the occurrence of monazite in pegmatite and charnockites of Eastern Ghats. The various characters of rutile and zircon suggest that each of these minerals has a multisource. According to geochemical studies settling of organic matter is highest in areas where deposition of fine grained sediment takes place. The organic carbon is often a good index for deciphering depositional environment.展开更多
The method of random forest was used to classify the heavy mineral assemblages of 2 418 Jurassic samples in the southern Junggar Basin, and determine the distribution of the heavy mineral assemblages from the same pro...The method of random forest was used to classify the heavy mineral assemblages of 2 418 Jurassic samples in the southern Junggar Basin, and determine the distribution of the heavy mineral assemblages from the same provenance systems. Based on the analysis of heavy minerals assemblages, ZTR index, sedimentary characteristics, U-Pb zircon ages, whole-rock geochemical and paleocurrent direction analysis, the study reveals that five important provenances were providing sediments to the southern Junggar Basin in the Jurassic period: The North Tianshan(NTS), Central Tianshan(CTS), Bogda Mountains, Zhayier Mountains and Kalamaili Mountains. During the Early Jurassic, NTS-CTS, Kalamaili Mountains and Zhayier Mountains are primary provenances, Bogda Mountains started to uplift and supply clastic materials in the Middle Jurassic. There are three sedimentary area in the Jurassic of southern Junggar Basin: the western part, the central part and the eastern part. In the western part, the clastic materials of the Early Jurassic was mainly from NTS blocks and Zhayier Mountains, and the sediments were dominantly derived from the Zhayier Mountains during the Middle–Late Jurassic. In the central part, the main provenance of the Early Jurassic switched from NTS to CTS. In the Xishanyao Formation, the main source went back to NTS again. The NTS was the primary provenance during the sedimentary periods of Toutunhe Formation and Qigu Formation. In the eastern part, the contribution of CTS and Kalamaili Mountains were considered as major provenances in the Early Jurassic-Xishanyao Formation, small proportion of sediments were from NTS. The Bogda mountains uplifted and started to provide sediments to the Junggar Basin in the sedimentary period of Xishanyao Formation, and became the major source during the Toutunhe Formation period, with small amount of sediments from CTS. The provenance from CTS was hindered during the sedimentary period of Qigu Formation owing to the uplifting of the Bogda mountains, and the sediments were mainly from the Bogda mountains and NTS.展开更多
The bottom sediment samples were gathered during island investigation in 1994 and in the period of carrying out the natural science fund project of Fujian in 1999. The composition, distribution and assemblage characte...The bottom sediment samples were gathered during island investigation in 1994 and in the period of carrying out the natural science fund project of Fujian in 1999. The composition, distribution and assemblage characteristics of heavy minerals which granularity distributes from 0.063 to 0.125 mm in the sediment from Jiulong River estuary are studied in the paper. The results show that there are 49 kinds of heavy minerals and the average content of them is 9.38 %. The dominant and characteristic minerals are magnetite, hematite, epidote, ilmenite, limonite, hornblende, zircon, andalusite, biotite and so on. 4 mineral assemblage ⅠⅡzones (.The watercourse gateway of Jiulong River mineral zone, . The northern estuary ⅢⅣof Jiulong River mineral zone, . The southern estuary mineral zone, . The eastern estuary of Jiulong River mineral zone ), can be divided based on the heavy mineral contents and the distribution characteristics, which not only relates to the matter sources but also is controlled by hydrodynamic condition and the sedimentary environment in the Jiulong River estuary.展开更多
Based on the analysis and mathematical statistics of quantitative data on both the heavy minerals and their REE (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu), trace (Zr, Hf, Th, Ta, U, Rb, Sr, Zn, Co, Ni, Cr, As, Sc) and major (Fe...Based on the analysis and mathematical statistics of quantitative data on both the heavy minerals and their REE (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu), trace (Zr, Hf, Th, Ta, U, Rb, Sr, Zn, Co, Ni, Cr, As, Sc) and major (Fe) elements in the surface sediments in the northwestern sea area of Antarctic Peninsula, the authors find that the heavy minerals as the carriers of REE and trace elements should not be overlooked.Q-mode factor analysis of the heavy minerals provides a 3-factor model of the heavy mineral assemblages in the study area, which is mainly controlled by the origin of materials and sea currents. The common factor P1, composed mainly of pyroxene and metal minerals, and common factor P2, composed of hornblende, epidote and accessory minerals, represent two heavy mineral assemblages which are different from each other in both lithological characters and origin of materials. And common factor P3 probably results from mixing of two end members of the above-mentioned assemblages. R-mode group analysis of the heavy minerals indicates that there are two heavy mineral groups in the sea area, which are different from each other in both genesis and origin of materials. With the help of R-mode analysis, 22 elements are divided into 3 groups and 9 subgroups. These element assemblages show that they are genetically related and that they are different in geochemical behaviors during diagenesis and mineral-forming process. In addition, the relationship between the heavy mineral assemblages and the element subgroups is also discussed.展开更多
The quantitative analysis of sediment sources in a sink is an important scientific topic and challenge in provenance research.The characteristics of heavy minerals,combined with the geochemical constituents of detrita...The quantitative analysis of sediment sources in a sink is an important scientific topic and challenge in provenance research.The characteristics of heavy minerals,combined with the geochemical constituents of detrital grains,provide a reliable provenance-tracing approach.We developed a mineral identification method to analyze the multiple grain-size fraction of sediments,from which the elemental geochemistry of hornblende was used to compare the characteristics of sediments from the Huaihe River and Huanghe(Yellow)River in eastern China.Elements that were statistically identified as being able to discriminate sediment provenance were employed to perform a quantitative analysis of the sources of sediments of the abandoned Huanghe River.Results reveal that the Huaihe River is characterized by a high amphibole content of>60%and that the Huanghe and abandoned Huanghe rivers have greater abundances of limonite and carbonate minerals compared with those of the Huaihe River.The contents of trace elements and rare earth elements in hornblende show that the sediments of the abandoned Huanghe River are similar to those of the Huanghe River but different from those of the Huaihe River.Furthermore,chemical mass balance was used to calculate the relative contributions of different provenances of sediment from the abandoned Huanghe River,and nine trace elements of hornblende were identified as discriminators of provenance.Approximately 2%of the hornblende in the abandoned Huanghe River is derived from the Huaihe River and 98%from the Huanghe River.Considering the proportion of hornblende in the total sediment,it is inferred that the contribution of Huaihe River sediment to the abandoned Huanghe River is approximately 0.5%.This study shows that mineral analysis using multiple grain-size fractions(within the wide range of 1Φto 6Φ)with assessment in elemental geochemistry of hornblende can characterize the provenance of fluvial material in coastal zones.展开更多
OBJECTIVE Cerebral ischemia or ischemic stroke is due to insufficient blood supply to the brain,which causes hypoxia or ischemia in some areas.This work aimed to quantify the minerals and heavy metals in Qishiwei Zhen...OBJECTIVE Cerebral ischemia or ischemic stroke is due to insufficient blood supply to the brain,which causes hypoxia or ischemia in some areas.This work aimed to quantify the minerals and heavy metals in Qishiwei Zhenzhu pill in vivo and in vitro,analyze its effect on the types and abundance of intestinal flora,and study its mechanism on inflammation and apoptosis pathways as a treatment for cerebral ischemia.METHODS Microwave digestion and inductively coupled plasma mass spectrometry(ICP-MS)were used to determine the minerals and heavy metals in 10 batches of Qishiwei Zhenzhu pill in vitro.With the use of the middle cerebral artery obstruction(MCAO)model,ICP-MS was applied to determine the content of minerals and heavy metals in hepatic portal vein blood,abdominal aortic blood,brain,liver,kidney,hair,urine and feces at different time periods.On this model,the ileum,cecum,and colon tissues were tested for intestinal pathology,and 16S rRNA was used for sequencing.Species taxonomy,αdiversity,and species microbial composition and structure analysis were also performed.Polymerase chain reaction and Western blotting were employed to determine the mRNA and protein expression of p38 MAPK,caspase-3,IL^(-1)βand TNF-αin the ischemic brain tissues of rats.RESULTS The average content of heavy metals in the 10 batches of Qishiwei Zhenzhu pill samples is in the descending order Hg>Cu>Pb.Significant differences in the metal elements are found among Qishiwei Zhenzhu pill from different manufacturers but not among the different batches of the same manufacturer.An extremely low content of heavy metals are absorbed into the blood or accumulated in the brain,liver,kidney,and other tissues.Stool is the main excretion route of minerals and heavy metals from Qishiwei Zhenzhu pill.This medicine helps repair the intestinal mucosa in MCAO rats.At the phylum level,it can regulate the abundance of Firmicutes and Proteobacteria in the intestinal flora of rats with cerebral ischemia.At the genus level,it can adjust the abundance of Escherichia Shigella.At the species level,it can adjust the abundance of Lactobacillus yoelii and Lactobacillus reuteri.Cluster classification results show that Qishiwei Zhenzhu pill can improve the intestinal flora of rats with cerebral ischemia,reduce the mRNA and protein expression of caspase-3 and IL^(-1)βin rat brain tissues,and have a tendency to decrease the mRNA expression of p38 MAPK and TNF-α.CONCLUSION Quantifying the minerals and heavy metals in Qishiwei Zhenzhu pill in vivo and in vitro will help improve their quality standards.Minerals and heavy metals are mainly excreted in feces,accumulate in extremely low levels in various tissues,and do not damage the intestinal mucosa.The effective material basis of Qishiwei Zhenzhu pill in treating cerebral ischemia may be related to their Li,Cr,and Cd elements.These pills can improve the environment of intestinal flora,and their mechanism of treatment for cerebral ischemia may be related to the down-regulation of IL^(-1)βinflammatory factor and inhibition of cell apoptosis.展开更多
基金The National Science and Technology Major Project under contract No.2011ZX05025-002-03
文摘Based on heavy mineral data in core samples from eleven drillings, supplemented by paleontological, element geochemical and seismic data, the evolution of sediment provenance and environment in the Qiongdongnan Basin (QDNB) was analysed. The results show that the basement in the QDNB was predominantly composed of terrigenous sediments. Since the Oligocene the QDNB has gradually undergone transgressions and evolution processes in sedimentary environment from terrestrial-marine transitional to littoral-neritic, neritic, and bathyal roughly. The water depth showed a gradually increasing trend and was generally greater in the southern region than that in the northern region in the same time. With changes in sedimentary environment, provenances of the strata (from the Yacheng Formation to the Yinggehai Formation) showed principal characteristics of multi-sources, evolving from autochthonous source, short source to distant source step by step. During the Early Oligocene, the sediments were mainly proximal basaltic pyroclastic source and adjacent terrigenous clastic source, afterwards were becoming distant terrigenous clastic sources, including Hainan Island on the north, Yongle Uplift on the south, Shenhu Uplift on the northeast, the Red River System on the northwest and Indochina Peninsula on the southwest, or even a wider region. The Hainan Island provenance began to develop during the Early Oligocene and has become a main provenance in the QDNB since the Middle Miocene. The provenances from Yongle Uplift and Shenhu Uplift most developed from the Late Oligocene to the Early Miocene and gradually subsided during the Middle Miocene. During the Late Miocene, as a main source of sediments filled in the central canyon, the Red River System provenance added to the QDNB massively, whose impact terminated at the end of the Pliocene. The western Yinggehai Basin (YGHB) provenance derived from Indochina Peninsula had developed from the Pliocene on to the Pleistocene. In addition, the material contribution of marine authigenous source to the basin (especially to the southern region) could not be ignored.
基金funded by China-ASEAN maritime cooperation fund: Comparative Study of Holocene Sedimentary Evolution of the Yangtze River Delta and the Red River Deltathe National Natural Science Foundation of China (Nos. 41706074 and 41506107)
文摘The heavy mineral compositions of the sediments in core D04 with a length of 20.2 m from the muddy area outside the Oujiang Estuary along the coast of Zhejiang-Fujian Provinces have been analyzed. Core D04 can be divided into three units: DU1(0–7.4 m), DU2(7.4–11.4 m) and DU3(11.4–20.2 m). The results showed that the heavy minerals are authigenic pyrite(65.6%)– hornblende(16.0%) – epidote(4.6%) assemblages. The core sediments are mainly composed of clayey silt, which belongs to the clinoform deposit formed since 5.8 kyr, indicating a weak hydrodynamic environment. The deposition rates changed in the trend of high-low-high upward. Quantitative analysis shows that the core sediments were mainly from the suspended sediments of the Changjiang(Yangtze) River, accounting for 79.2%, with only 10.0% from Oujiang, and 10.8% from other provenance. The Oujiang-derived sediments were gradually increased from the bottom unit DU3(3.1%) to the top unit DU1(17.8%), but the Changjiang-derived sediments were gradually decreased. The source changes are closely related to the development of Yangtze River Delta and Wenzhou Bay, climate changes and human activities. During the period of 2.1–3.7 kyr, the sediment supply was greatly reduced due to the poor reclamation capacity of the river basins, resulting in a low deposition rate. Since 2 kyr, the enhancement of human activities in the Yangtze River Basin and the Oujiang River Basin led to more soils to be eroded and transported to the study area. Due to the short distance of the site of core D04 from the Oujiang River mouth, the study area received more Oujiang-derived sediments when upper unit(DU1) deposited than the lower units(DU2 and DU3).
文摘Individual and combined effects of Cu, Pb, Zn and Cd on N mineralization, urease and phosphatase were examined in a Typic Udic Ferrisol in laboratory by employing an uniform design and a single factor design.Soil pollution caused by heavy metals inhibited N mineralization (No value) and urease and phosphatase activities. The combined pollution of metals alleviated their toxicity to N mineralization to some extent,whereas aggravated the toxicity to urease and phosphatase. Phosphorous application could mitigate the toxic effect of heavy metals on phosphatase activities, while alleviating effect of N application on the toxicity of heavy metals to urease was inconsistent. However, the mitigating effect of the fertilizers was limited in heavily polluted soils.
文摘The heavy mineral sands of Senegal are exploited to extract titanium oxides and zircon. Mining is carried out first by means of a floating dredge and concentration plant which produce</span><span style="font-family:Verdana;">s</span><span style="font-family:""><span style="font-family:Verdana;"> a heavy mineral concentrate (HMC) containing on average 78% titanium oxides, 11% zircon and a set of silicate and alumino-silicate minerals. This heavy mineral concentrate is then treated by gravity, magnetic and electrostatic separation to produce titanium oxide concentrates (ilmenite, leucoxene, rutile) and three varieties of zircon concentrates (Premium zircon, standard zircon and medium grade zircon standard). In this study, we describe the various mineral concentrates in terms of mineralogical assemblages, and textural variability within grains, using Qemscan and Scanning Electron Microscopy. The titanium oxide concentrates are differentiated by their TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> content and vary from ilmenite to rutile. The zircon concentrates are characterized by the presence of impurities in the zircons, which consist in numerous inclusions of titanium oxides and silicate minerals. The mineralogical characteristics determined by scanning electron microscopy and by Qemscan showed great variability within the grains themselves. Heavy minerals contain many mineral inclusions and show strong chemical zoning.
文摘In this paper the seven-step continuous extracting method was employed in the studyof chemical forms of the six heavy metals Co, Zn, Pb, Cu, Cr and Mn. The result shows thatthe metals in the laterite are present in the chemical form of crystalline iron oxides andresidues, and they are transformed toward organic and exchangeable forms in the surface soil.Linear regression analysis indicates that the above heavy metals have a positive correlation withthe crystalline iron oxide minerals. The crystalline iron oxide minerals have a very importantrole to play in the enrichment of heavy metals, especially the solid components in the laterite.
文摘Fifteen beach sand samples were collected from a depth of 1mt at different locations of the Astaranga beach, Puri with an interval of 300 mts. The beach sand samples were studied for heavy mineral concentration at different location points and were subjected to scanning electron microscope studies for the mineral ilmenite. The percentage of total heavy mineral in Astaranga beach varies from 16.42% to 24.47%. The important minerals are ilmenite, rutile, zircon, sillimanite, garnet, monazite, pyroxene and others. For all samples a set of sieves bearing ASTM nos. 30, 40, 60, 80, 100, 120, 140, 170 and 200 corresponding to 0.59 mm, 0.42 mm, 0.25 mm, 0.177 mm, 0.149 mm, 0.125 mm, 0.105 mm, 0.088 mm and 0.074 mm respectively were used to separate different size fractions. The sieve mesh sizes vary from 0.59 mm to 0.74 mm. It was observed that maximum concentration of heavies was confined to +200 ASTM sieve or 0.74 mm. The total average heavy mineral concentration and light mineral concentration was found to be 20.07% and 79.49% respectively. The concentration percentage of different heavy minerals varied from higher to lower in the order like ilmenite, zircon, sillimanite, garnet, rutile, pyroxene, monazite and others. The ilmenite mineral in this area is found to have altered to secondary phases like pseudorutile, leucoxene and rutile along the fractures, cavities and grain boundaries. The alteration condition was observed as streaks, irregular patches, bands, and rim like structures around the ilmenite grains. Detailed study of alteration in ilmenite was carried out by Energy Dispersive Spectrometer (EDS) attached to Scanning Electron Microscope. The potentialities of heavies found at different locations of the Astaranga beach suggested a good source for the exploration. The alteration of the mineral ilmenite and high concentration of heavy minerals clearly pointed to the sedimentary environment and mechanical concentration process due to repeated wave action.
文摘Gravity, magnetic and electrostatic separation methods allowed to obtain different titanium oxide concentrates (ilmenite, leucoxene, rutile) and different varieties of zircon concentrates (premium zircon, standard zircon, medium grade zircon standard) from Senegal’s heavy mineral sands. During mining separation, monazite, which is a paramagnetic mineral, was found in a non-negligible concentration of 0.57 wt% on average in the medium grade zircon standard which also contains 37.96 wt% zircon and 44.46 wt% titanium oxides. Magnetic and gravity separation tests were carried out on the Medium grade zircon standard (MGZS) to produce a monazite concentrate at Eramet Ideas laboratory. Magnetic separation at 1.5 teslas intensity resulted in the recovery of 94.8% of the monazite from the MGZS. Gravity separation also recovered 76.6% of the monazite from the MGZS. The combination of these two treatment methods can thus produce three concentrates from MGZS (a monazite concentrate, a zircon concentrate, and a titanium oxide concentrate).
基金Supported by the National Natural Science Foundation of China (Nos. 40176014,40067013)
文摘Correspondence analysis and fuzzy C-means cluster methods were used to divide the stratigraphy of heavy mineral assemblages, and the sediment sources and depositional dynamics of the environment reconstructed. The assemblages were taken from marine sediments from the late Pleistocene to the Holocene in Core Q43 situated on the outer shelf of the East China Sea. Based on the variable boundaries of the mineral assemblage at 63 and 228 cmbsf (cm below sea floor), the core might have previously been divided into three sediment strata marked with units Ⅰ, Ⅱ and Ⅲ, which would be consistent with the divided sediment stratum of the core using minor element geochemistry. The downcore distribution of heavy minerals divided the sedimentary sequence into three major units, which were further subdivided into four subunits. The interval between 0 and 63 cmbsf of the core (unit Ⅰ), which spans the Holocene and the uppermost late Pleistocene, is characterized by a hornblende-epidote-pyroxene assemblage, and contains relatively a smaller amount of schistic mineral and authigenic pyrite. In comparison, the interval between 63 and 228 cmbsf (unit Ⅱ), is representative of the Last Glacial Maximum (LGM), and features a hornblende-epidote-magnetite-ilmenite assemblage containing the highest concentrations of heavy minerals and opaque minerals. However, the interval between 228 and 309 cmbsf (unit Ⅲ), which spans the subinterglacial period, is characterized by a hornblende-authigenic-pyrite-mica assemblage. Relative ratios of some heavy minerals can be used as tracers of clastic sediment sources. The lower part of the sediment core shows the highest magnetite/ilmenite ratio and relatively high hornblende/augite and hornblende/epidote ratios. The middle core shows the highest hornblende/augite and hornblende/epidote ratios, and the lowest magnetite/ilmenite ratio. The upper part exhibits a slightly higher magnetite/ilmenite ratio, and also the lowest hornblende/augite and hornblende/epidote ratios. The distribution of the mineral ratio is consistent with stratigraphic division in heavy mineral data using correspondence analysis and fuzzy C-means clustering. Variations in heavy mineral association and mineral ratio in core Q43 revealed changes in provenance and depositional environment of the southern outer shelf of the East China Sea since the late Pleistocene, well corresponding to interglacial and glacial cycles.
文摘Heavy mineral petrographic and geochemical compositions (major and trace/rare earth elements)?of sandstones obtained from the Oligocene-Miocene Ogwashi-Asaba Formation, Niger Delta were studied to determine their provenance, source area weathering conditions and tectonic setting. The heavy mineral suite (opaque minerals, zircon, tourmaline, and rutile) revealed that the sandstones are mineralogically mature and implied rapid disintegration and chemical decomposition of sediments mostly of recycled orogen. The sandstones were geochemically classified as Fe-sand and partly quartz arenitic. Chemical Index of Alteration and Chemical Index of Weathering values of 89.92% and 91.87% respectively suggest that the source region was predominantly felsic and was subjected to intense chemical weathering probably under tropical palaeoclimatic conditions with abundant rainfall that enhanced sediment recycling. Major element concentration discriminant plots also indicated that the sediments were derived from mixed sources (granitic, gneissic or recycled orogen) under passive margin setting. Chondrite normalized plot of the rare earth element pattern is marked by light rare earth element enrichment and negative Eu anomalies, interpreted to mean that provenance was mainly continental crustal rocks. Trace elemental ratios that are provenance diagnostic (La/Sc, Th/Sc, Cr/Th, La/Co, Th/Co, Th/Cr, Eu/Eu*, and Eu*) all point to sediments derived from felsic source and upper continental crust. The mixed provenance of the sandstones can be traced to the southwestern and southeastern Basement Complex (consisting of granites, gneisses, etc.) and sediments derived from the adjacent sedimentary basins (Anambra and Benue Trough).
基金System in research area Project/OF4534 supported by CUMT Science Foundation
文摘According to tectonic position and mineral inclusions, supply resource in western Qaidamu basin is di- vided into the front of Aerjinshan mountain and the front of Qimantageshan mountain. The former is mainly composed of zircon, garnet inclusions, indicating that its mother rocks are mainly metamorphic rocks. Gas and zircon, iron ore, carbon grain inclusions is common in the front of Qimantage mountain, indicating that its mother rock are mainly magmatite and mixed metamorphic rocks. The supply resource is abundant and tectonic movement is active in the joint of the two mountains. The western Qaidamu basin is further divided into 6 heavy mineral sub-regions according to their features of association and stable coefficient of heavy mineral. They are approximately corresponding to their sedimentary environment. Of the 6 sub-regions, the unstable region is corresponding to fluvial fan, middle stable re- gion is corresponding to river-alluvial plain-delta, stable region is corresponding to river-alluvial plain -delta-offshore. The fragment transported distance is presumed based on stable coefficient. In vertical, stable coefficient of heavy min- eral becomes small from Xiaganchai formation to Xiayoushashan formation, indicating that the supply resource be- came nearer and nearer.
基金granted by the National Natural Science Foundation of China(NSFC)for Distinguished Young Scholar(Grant No.41525007).
文摘Heavy minerals with densities higher than 2.8 g.cm-3 are generally considered minor components of sand or sandstone,typically forming 1%of the weight in the samples(Mange and Wright,2007).Heavy-mineral analysis is an effective tool for studying the sedimentary provenance of siliciclastic rocks,reconstructing sedimentary sources to sink routes,subdividing and correlating non-fossiliferous siliciclastic strata.
文摘Environmental magnetic research on beaches and shoreline processes is limited.Therefore,we carried out environmental magnetic studies on the heavy mineral-enriched,dark-reddish sands on Cedar Beach of western Lake Erie(41.68°N,82.40°W).Magnetite has been identified as the dominant magnetic mineral of these sands.This study reveals a spatial variation in concentration of magnetite particles,distribution of
文摘The northern section of the UAE is bordered by the Gulf of Oman’s northern extension (East Coast) and Arabian Gulf’s Eastern extension (northern West Coast). Unlike the rest, the coastline of this section is more or less faced by mountainous areas of various rock types. The beach sands a long this coastline at both sides (East and northern-West) signify some heavy minerals concentration of an important consideration.
基金funded by China-ASEAN Maritime Cooperation Fund China-ASEAN Marine Geoscience Research and Disaster Reduction and Prevention Initiativesthe National Natural Science Foundation of China (Nos. 41706074 and 41506107)。
文摘In this paper, we analyzed the grain size and heavy mineral compositions of 52 surface sediment samples collected from the Kompong Som Bay of Cambodia and the adjacent rivers to depict the marine sedimentary environments and transport processes. Heavy minerals in sediments are dominated by authigenic pyrite, siderite, and tourmaline, with average percentages of 36.52%, 29.02%, and 10.94%, respectively. Two provinces can be divided according to the spatial similarity of minerals. The sediments from Province I, covered by silt grains in the northern bay, are characterized by autogenic pyrite, indicating a weakly reducing environment;whereas in Province II, covered by sand grains in the southern bay, the siderite-tourmaline-authigenic pyrite-zircon-hornblende assemblage occurs, indicating a mild reducing environment and locally oxidizing environment. Most of the sediments in the Kompong Som Bay are introduced from the Preak Piphot River and Srae Ambel River, except that some of them in the south areas come from coastal erosion. Generally, the sediments are difficult to be transported because of the low sediment loads entering the sea and weak hydrodynamic conditions. However, they are transported from the north to the south during the tide ebbing when the hydrodynamic force is much stronger. The sediment distribution and transport patterns are controlled by many factors, including submarine topography, hydrodynamic conditions, the southwest monsoon, land contours, and sediment supply.
文摘The present work deals with the geochemical and heavy mineral characteristics studies of sediments of Gosthani river estuary. The aim of study is to determine the provenance, establish the depositional environment and spatial variability of sediment. From the study it is found that the sediment of Gosthani river contains heavy minerals that consist of Rutile, Garnet, Sillimanite, Staurolite, Monazite, Zercon, Pyroxenes, Epidote, Amphiboles and Opaques minerals. The lesser abundant heavy minerals are amphiboles, zircon, monazite, rutile, staurolite, epidote. These heavy minerals indicate that the sediments were essentially derived from metamorphic provenance varying from medium to high grade and partly from crystalline igneous rocks. Well rounded monazites come from Eastern Ghats. This is based on the occurrence of monazite in pegmatite and charnockites of Eastern Ghats. The various characters of rutile and zircon suggest that each of these minerals has a multisource. According to geochemical studies settling of organic matter is highest in areas where deposition of fine grained sediment takes place. The organic carbon is often a good index for deciphering depositional environment.
基金Supported by the China National Science and Technology Major Project(2017ZX05008-001)
文摘The method of random forest was used to classify the heavy mineral assemblages of 2 418 Jurassic samples in the southern Junggar Basin, and determine the distribution of the heavy mineral assemblages from the same provenance systems. Based on the analysis of heavy minerals assemblages, ZTR index, sedimentary characteristics, U-Pb zircon ages, whole-rock geochemical and paleocurrent direction analysis, the study reveals that five important provenances were providing sediments to the southern Junggar Basin in the Jurassic period: The North Tianshan(NTS), Central Tianshan(CTS), Bogda Mountains, Zhayier Mountains and Kalamaili Mountains. During the Early Jurassic, NTS-CTS, Kalamaili Mountains and Zhayier Mountains are primary provenances, Bogda Mountains started to uplift and supply clastic materials in the Middle Jurassic. There are three sedimentary area in the Jurassic of southern Junggar Basin: the western part, the central part and the eastern part. In the western part, the clastic materials of the Early Jurassic was mainly from NTS blocks and Zhayier Mountains, and the sediments were dominantly derived from the Zhayier Mountains during the Middle–Late Jurassic. In the central part, the main provenance of the Early Jurassic switched from NTS to CTS. In the Xishanyao Formation, the main source went back to NTS again. The NTS was the primary provenance during the sedimentary periods of Toutunhe Formation and Qigu Formation. In the eastern part, the contribution of CTS and Kalamaili Mountains were considered as major provenances in the Early Jurassic-Xishanyao Formation, small proportion of sediments were from NTS. The Bogda mountains uplifted and started to provide sediments to the Junggar Basin in the sedimentary period of Xishanyao Formation, and became the major source during the Toutunhe Formation period, with small amount of sediments from CTS. The provenance from CTS was hindered during the sedimentary period of Qigu Formation owing to the uplifting of the Bogda mountains, and the sediments were mainly from the Bogda mountains and NTS.
基金The natural science fund of Fujian ( Numbering item: D9910006 )
文摘The bottom sediment samples were gathered during island investigation in 1994 and in the period of carrying out the natural science fund project of Fujian in 1999. The composition, distribution and assemblage characteristics of heavy minerals which granularity distributes from 0.063 to 0.125 mm in the sediment from Jiulong River estuary are studied in the paper. The results show that there are 49 kinds of heavy minerals and the average content of them is 9.38 %. The dominant and characteristic minerals are magnetite, hematite, epidote, ilmenite, limonite, hornblende, zircon, andalusite, biotite and so on. 4 mineral assemblage ⅠⅡzones (.The watercourse gateway of Jiulong River mineral zone, . The northern estuary ⅢⅣof Jiulong River mineral zone, . The southern estuary mineral zone, . The eastern estuary of Jiulong River mineral zone ), can be divided based on the heavy mineral contents and the distribution characteristics, which not only relates to the matter sources but also is controlled by hydrodynamic condition and the sedimentary environment in the Jiulong River estuary.
文摘Based on the analysis and mathematical statistics of quantitative data on both the heavy minerals and their REE (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu), trace (Zr, Hf, Th, Ta, U, Rb, Sr, Zn, Co, Ni, Cr, As, Sc) and major (Fe) elements in the surface sediments in the northwestern sea area of Antarctic Peninsula, the authors find that the heavy minerals as the carriers of REE and trace elements should not be overlooked.Q-mode factor analysis of the heavy minerals provides a 3-factor model of the heavy mineral assemblages in the study area, which is mainly controlled by the origin of materials and sea currents. The common factor P1, composed mainly of pyroxene and metal minerals, and common factor P2, composed of hornblende, epidote and accessory minerals, represent two heavy mineral assemblages which are different from each other in both lithological characters and origin of materials. And common factor P3 probably results from mixing of two end members of the above-mentioned assemblages. R-mode group analysis of the heavy minerals indicates that there are two heavy mineral groups in the sea area, which are different from each other in both genesis and origin of materials. With the help of R-mode analysis, 22 elements are divided into 3 groups and 9 subgroups. These element assemblages show that they are genetically related and that they are different in geochemical behaviors during diagenesis and mineral-forming process. In addition, the relationship between the heavy mineral assemblages and the element subgroups is also discussed.
基金Supported by the National Natural Science Foundation of China(Nos.41576057,41876092)。
文摘The quantitative analysis of sediment sources in a sink is an important scientific topic and challenge in provenance research.The characteristics of heavy minerals,combined with the geochemical constituents of detrital grains,provide a reliable provenance-tracing approach.We developed a mineral identification method to analyze the multiple grain-size fraction of sediments,from which the elemental geochemistry of hornblende was used to compare the characteristics of sediments from the Huaihe River and Huanghe(Yellow)River in eastern China.Elements that were statistically identified as being able to discriminate sediment provenance were employed to perform a quantitative analysis of the sources of sediments of the abandoned Huanghe River.Results reveal that the Huaihe River is characterized by a high amphibole content of>60%and that the Huanghe and abandoned Huanghe rivers have greater abundances of limonite and carbonate minerals compared with those of the Huaihe River.The contents of trace elements and rare earth elements in hornblende show that the sediments of the abandoned Huanghe River are similar to those of the Huanghe River but different from those of the Huaihe River.Furthermore,chemical mass balance was used to calculate the relative contributions of different provenances of sediment from the abandoned Huanghe River,and nine trace elements of hornblende were identified as discriminators of provenance.Approximately 2%of the hornblende in the abandoned Huanghe River is derived from the Huaihe River and 98%from the Huanghe River.Considering the proportion of hornblende in the total sediment,it is inferred that the contribution of Huaihe River sediment to the abandoned Huanghe River is approximately 0.5%.This study shows that mineral analysis using multiple grain-size fractions(within the wide range of 1Φto 6Φ)with assessment in elemental geochemistry of hornblende can characterize the provenance of fluvial material in coastal zones.
文摘OBJECTIVE Cerebral ischemia or ischemic stroke is due to insufficient blood supply to the brain,which causes hypoxia or ischemia in some areas.This work aimed to quantify the minerals and heavy metals in Qishiwei Zhenzhu pill in vivo and in vitro,analyze its effect on the types and abundance of intestinal flora,and study its mechanism on inflammation and apoptosis pathways as a treatment for cerebral ischemia.METHODS Microwave digestion and inductively coupled plasma mass spectrometry(ICP-MS)were used to determine the minerals and heavy metals in 10 batches of Qishiwei Zhenzhu pill in vitro.With the use of the middle cerebral artery obstruction(MCAO)model,ICP-MS was applied to determine the content of minerals and heavy metals in hepatic portal vein blood,abdominal aortic blood,brain,liver,kidney,hair,urine and feces at different time periods.On this model,the ileum,cecum,and colon tissues were tested for intestinal pathology,and 16S rRNA was used for sequencing.Species taxonomy,αdiversity,and species microbial composition and structure analysis were also performed.Polymerase chain reaction and Western blotting were employed to determine the mRNA and protein expression of p38 MAPK,caspase-3,IL^(-1)βand TNF-αin the ischemic brain tissues of rats.RESULTS The average content of heavy metals in the 10 batches of Qishiwei Zhenzhu pill samples is in the descending order Hg>Cu>Pb.Significant differences in the metal elements are found among Qishiwei Zhenzhu pill from different manufacturers but not among the different batches of the same manufacturer.An extremely low content of heavy metals are absorbed into the blood or accumulated in the brain,liver,kidney,and other tissues.Stool is the main excretion route of minerals and heavy metals from Qishiwei Zhenzhu pill.This medicine helps repair the intestinal mucosa in MCAO rats.At the phylum level,it can regulate the abundance of Firmicutes and Proteobacteria in the intestinal flora of rats with cerebral ischemia.At the genus level,it can adjust the abundance of Escherichia Shigella.At the species level,it can adjust the abundance of Lactobacillus yoelii and Lactobacillus reuteri.Cluster classification results show that Qishiwei Zhenzhu pill can improve the intestinal flora of rats with cerebral ischemia,reduce the mRNA and protein expression of caspase-3 and IL^(-1)βin rat brain tissues,and have a tendency to decrease the mRNA expression of p38 MAPK and TNF-α.CONCLUSION Quantifying the minerals and heavy metals in Qishiwei Zhenzhu pill in vivo and in vitro will help improve their quality standards.Minerals and heavy metals are mainly excreted in feces,accumulate in extremely low levels in various tissues,and do not damage the intestinal mucosa.The effective material basis of Qishiwei Zhenzhu pill in treating cerebral ischemia may be related to their Li,Cr,and Cd elements.These pills can improve the environment of intestinal flora,and their mechanism of treatment for cerebral ischemia may be related to the down-regulation of IL^(-1)βinflammatory factor and inhibition of cell apoptosis.