Electromagnetic separation of the iron-rich phase inclusions from Al alloy was investigated. The influencing parameters including magnetic induction density, the section shape of the separating channel and the length ...Electromagnetic separation of the iron-rich phase inclusions from Al alloy was investigated. The influencing parameters including magnetic induction density, the section shape of the separating channel and the length of influential loop of the metal melt on the separation efficiency of iron-rich phase inclusions were studied. The results show that when the proper magnetic induction density (B=0.3T) is applied, rectangle separating channel is used, and the influential loop of the metal melt is long, high separating efficiency of the iron-rich phase inclusions can be obtained.展开更多
The characterization of multiple iron-rich phases in high-pressure die-cast AlSi10MnMg alloy was studied.Attention was focused on the formation and fracture behavior of the primary iron-rich phase((P-IMC)_(I))formed i...The characterization of multiple iron-rich phases in high-pressure die-cast AlSi10MnMg alloy was studied.Attention was focused on the formation and fracture behavior of the primary iron-rich phase((P-IMC)_(I))formed in the shot sleeve and plate-shaped eutectic iron-rich phase in high-pressure die cast(HPDC)AlSi10MnMg alloy.Results show that multiple types of iron-rich phases with various morphologies,in-cluding primary iron-rich phases(polyhedral(P-IMC)_(I) and(P-IMC)_(II))and eutectic iron-rich phases(plate-shaped,net shape,and fish-bone shape),were found in HPDC AlSi10MnMg.Coarse(P-IMC)_(I) formed in the shot sleeve were distributed in the interface between primaryα-Al and binary Al-Si eutectic.Small size(P-IMC)_(II) and various eutectic iron-rich phases formed in the die cavity and they were distributed in Al-Si binary eutectic.The primary iron-rich phases belonged to a simple cubic crystal structure with a lattice constant a=1.265 nm and they exhibited a lateral growth characteristic with a termination of{110}surface.βphase was surrounded byδphase and they coexisted in a plate-shaped iron-rich phase.High-density stacking fault inβphase andδ/βinterface provided an excellent nucleation site forδphase.From mechanical behavior,the stress concentration caused by eutectic iron-rich phases was far less than(P-IMC)_(I) and it would not cause crack initiation along the eutectic cluster boundary.In addition,(P-IMC)_(I) showed the worst deformation coordination with primaryα-Al while the plate-shaped eutectic iron-rich phase exhibited similar deformation characteristics with silicon particles.展开更多
A new method has been proposed to prepare Mg-A1-Si master alloys by utilizing scrap AI-Si-Fe alloys with higher Fe levels, which aims to segregate Fe from AI-Si-Fe alloys by Mg melt. The segregation be- haviors, micro...A new method has been proposed to prepare Mg-A1-Si master alloys by utilizing scrap AI-Si-Fe alloys with higher Fe levels, which aims to segregate Fe from AI-Si-Fe alloys by Mg melt. The segregation be- haviors, microstructure morphology and evolution mechanism of iron-rich phases in Mg-A1-Si alloy melts were studied, after AI-14Si-4Fe (wt%) alloys were added and dissolved completely. In the Mg-A1-Si alloys, iron has very little solubility and tends to combine with other elements to form intermetallic phases, which grow into a deposition layer due to the higher density. During the cooling and solidifying process of Mg-A1-Si melts, the needle-like AlsSiFe phase in AI-14Si-4Fe alloy evolved into blocky AI5Fe2 and Al0.7Fe3Si0.3 phases. Besides, the Fe levels of the Mg-AI-Si master alloys were reduced to 0.017 wt% from nominal content of 0.164 wt%. Based on the above results, this work carried out a semi-quantitative phase- compositions analysis for the deposition layer by relative intensity ratio (RIR) method, and evolution mechanism of the iron-rich phases had also been discussed. This study has paved a new way to regen- erate the scrap AI-Si-Fe alloys, which has a great significance of promoting the recycling of aluminum resources.展开更多
The effect of the melt holding temperature on the morphological evolution and sedimentation behavior of iron-rich intermetallics in Al-7.0 Si-1.0 Fe-1.2 Mn-0.25 Mg alloy was investigated using an optical microscope,sc...The effect of the melt holding temperature on the morphological evolution and sedimentation behavior of iron-rich intermetallics in Al-7.0 Si-1.0 Fe-1.2 Mn-0.25 Mg alloy was investigated using an optical microscope,scanning electron microscope and differential thermal analyzer.The results show that as the holding temperature decreases,the morphologies of the primary iron-rich phase in matrix change from star-like to polygonal,and the number of the primary phases gradually decreases and disappears at 615°C.Finally,the Chinese script phases with small size,high compact and uniform distribution are obtained.In contrast,the primary iron-rich phases in slag transform into a coarser polygonal shape with lower roundness,and some of them have hollow structures.Furthermore,the area fraction of intermetallics and Fe content in the matrix decrease gradually due to the formation and growth of sludge and subsequent natural sedimentation during melt holding.With the decrease of holding temperature,the main factors hindering the settlement of the primary phases are morphology,size,and density in turn.展开更多
TiN- Al2O3 composite powder was prepared by aluminothermic reduction- nitridation method with starting materials of aluminum-containing dross and rutile,and metallic aluminum in the aluminum-containing dross as reduce...TiN- Al2O3 composite powder was prepared by aluminothermic reduction- nitridation method with starting materials of aluminum-containing dross and rutile,and metallic aluminum in the aluminum-containing dross as reducer. The influences of synthesis temperature(600-1 400 ℃) and aluminum-containing dross addition(20% lower than theoretical value,theoretical value,20% higher than theoretical value,and 50% higher than theoretical value) on phase compositions and microstructure of the composites were investigated,and the reaction mechanism was analyzed. The results show that(1) TiN- Al2O3 composite powder can be synthesized under the experimental conditions; the main phases are TiN,α-Al2O3,a little bytownite,and MgAl2O4;(2)enhancing synthesis temperature or increasing aluminumcontaining dross addition favors the reaction of aluminothermic reduction- nitridation;(3) in the synthesized products,α-Al2O3 is platy or columnar; TiN is sub-micron granular,which reinforces and toughens the composite.展开更多
In this study,the effect of sintering temperature and the addition of kaolin,a sintering agent,on the microscopic,phase,and mechanical properties of ceramics were investigated using secondary aluminum dross(SAD)as the...In this study,the effect of sintering temperature and the addition of kaolin,a sintering agent,on the microscopic,phase,and mechanical properties of ceramics were investigated using secondary aluminum dross(SAD)as the main component in the manufacturing of ceramics.The basic phases of the ceramics were Al_(2)O_(3),MgAl_(2)O_(4),NaAl_(11)O_(17),and SiO_(2)without the addition of kaolin.The diffraction peaks of MgAl_(2)O_(4),NaAl_(11)O_(17),and SiO_(2)kept decreasing while those of Al_(2)O_(3)kept increasing with an increase in temperature.In addition,the increase in temperature promoted the growth of the grains.The grains were uniform in size and regular in distribution,with a shrinkage of 2.2%,porosity of 72.5%,bulk density of 1.076 g/cm^(3),and compressive strength of 1.12 MPa.When the sintering temperature was 1450°C,the basic phases of the ceramic after the addition of kaolin were Al_(2)O_(3),MgAl_(2)O_(4),NaAl_(11)O_(17),and SiO_(2).With the increase of kaolin,the diffraction peaks of NaAl_(11)O_(17)and SiO_(2)decreased until they disappeared,while the diffraction peaks of Al_(2)O_(3)increased significantly.When kaolin was added at 30 wt.%,the ceramics obtained had shrinkage of 18%,a porosity of 47.26%,a bulk density of 1.965 g/cm^(3),and compressive strength of 31.9 MPa.Cracks existed inside the ceramics without the addition of kaolin,while the addition of kaolin significantly changed this defect.It is shown that SAD can obtain porous ceramics with good properties at a sintering temperature of 1450°C and a kaolin addition of 30 wt.%.展开更多
This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy w...This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy with high strength and formability.With the increase of Zn content,forming the coupling distribution of multiscale precipitates and iron-rich phases with a reasonable matching ratio and dispersion distribution characteristics is easy.This phenomenon induces the formation of cell-like structures with alternate distribu-tion of coarse and fine grains,and the average plasticity–strain ratio(characterizing the formability)of the pre-aged alloy with a high strength is up to 0.708.Results reveal the evolution and influence mechanisms of multiscale second-phase particles and the corresponding high formability mechanism of the alloys.The developed coupling control process exhibits considerable potential,revealing remarkable improvements in the room temperature formability of high-strength Al–Zn–Mg–Cu alloys.展开更多
The impurity iron in silicon material will seriously affect the photoelectric conversion efficiency of silicon solar cells.However,the traditional silicon purification method has the disadvantages of long cycle,high e...The impurity iron in silicon material will seriously affect the photoelectric conversion efficiency of silicon solar cells.However,the traditional silicon purification method has the disadvantages of long cycle,high energy consumption and serious pollution.In this study,an efficient and green pulsed electric current purification technology is proposed.The electromigration effect of iron elements,the current density gradient driving of iron phase,and the gravity of iron phase all affect the migration behavior of iron phase in silicon melt under pulsed electric current.Regardless of the depth of electrode insertion into the silicon melt,the solubility of iron in silicon decreases under the pulsed electric current,which helps to form the iron phase.At the same time,the iron phase tends to sink toward the bottom under the influence of gravity.When the electrode is shallowly inserted,a non-uniform electric field is formed in the silicon melt,and the iron phase is mainly driven by the current density gradient to accelerate sink toward the bottom.When the electrode is fully inserted,an approximately uniform electric field is formed in the silicon melt,and iron elements are preferentially migrated to the cathode by electromigration,forming iron phase sinking at the cathode.The study of impurity iron migration behavior in silicon melt under pulsed electric current provides a new approach for the purification of polycrystalline silicon.展开更多
基金Foundation item: project (59774017) supported by NationalNatureScience Found, China project (G199906490-4) supported by Na-tionalKey FundamentalResearch and Developing Program, China
文摘Electromagnetic separation of the iron-rich phase inclusions from Al alloy was investigated. The influencing parameters including magnetic induction density, the section shape of the separating channel and the length of influential loop of the metal melt on the separation efficiency of iron-rich phase inclusions were studied. The results show that when the proper magnetic induction density (B=0.3T) is applied, rectangle separating channel is used, and the influential loop of the metal melt is long, high separating efficiency of the iron-rich phase inclusions can be obtained.
基金supported by the Major Science and Technology Project of Changchun City,Jilin Province(No.20210301024GX)the National Natural Science Foundation of China(No.52175335)The authors also appreciate the help pro-vided by China FAW Foundry Co.,LTD and Germany ALUMINUM RHEINFELDEN Group.
文摘The characterization of multiple iron-rich phases in high-pressure die-cast AlSi10MnMg alloy was studied.Attention was focused on the formation and fracture behavior of the primary iron-rich phase((P-IMC)_(I))formed in the shot sleeve and plate-shaped eutectic iron-rich phase in high-pressure die cast(HPDC)AlSi10MnMg alloy.Results show that multiple types of iron-rich phases with various morphologies,in-cluding primary iron-rich phases(polyhedral(P-IMC)_(I) and(P-IMC)_(II))and eutectic iron-rich phases(plate-shaped,net shape,and fish-bone shape),were found in HPDC AlSi10MnMg.Coarse(P-IMC)_(I) formed in the shot sleeve were distributed in the interface between primaryα-Al and binary Al-Si eutectic.Small size(P-IMC)_(II) and various eutectic iron-rich phases formed in the die cavity and they were distributed in Al-Si binary eutectic.The primary iron-rich phases belonged to a simple cubic crystal structure with a lattice constant a=1.265 nm and they exhibited a lateral growth characteristic with a termination of{110}surface.βphase was surrounded byδphase and they coexisted in a plate-shaped iron-rich phase.High-density stacking fault inβphase andδ/βinterface provided an excellent nucleation site forδphase.From mechanical behavior,the stress concentration caused by eutectic iron-rich phases was far less than(P-IMC)_(I) and it would not cause crack initiation along the eutectic cluster boundary.In addition,(P-IMC)_(I) showed the worst deformation coordination with primaryα-Al while the plate-shaped eutectic iron-rich phase exhibited similar deformation characteristics with silicon particles.
基金supported by the National Natural Science Foundation of China(No.512711101)the National Basic Research Program of China (No.2012CB825702)
文摘A new method has been proposed to prepare Mg-A1-Si master alloys by utilizing scrap AI-Si-Fe alloys with higher Fe levels, which aims to segregate Fe from AI-Si-Fe alloys by Mg melt. The segregation be- haviors, microstructure morphology and evolution mechanism of iron-rich phases in Mg-A1-Si alloy melts were studied, after AI-14Si-4Fe (wt%) alloys were added and dissolved completely. In the Mg-A1-Si alloys, iron has very little solubility and tends to combine with other elements to form intermetallic phases, which grow into a deposition layer due to the higher density. During the cooling and solidifying process of Mg-A1-Si melts, the needle-like AlsSiFe phase in AI-14Si-4Fe alloy evolved into blocky AI5Fe2 and Al0.7Fe3Si0.3 phases. Besides, the Fe levels of the Mg-AI-Si master alloys were reduced to 0.017 wt% from nominal content of 0.164 wt%. Based on the above results, this work carried out a semi-quantitative phase- compositions analysis for the deposition layer by relative intensity ratio (RIR) method, and evolution mechanism of the iron-rich phases had also been discussed. This study has paved a new way to regen- erate the scrap AI-Si-Fe alloys, which has a great significance of promoting the recycling of aluminum resources.
基金Project(2017GDASCX-0117)supported by the Guangdong Academy of Sciences,ChinaProject(201806010126)supported by the Pearl River S&T Nova Program of Guangzhou,China+3 种基金Projects(2017A050503004,2017A07071029)supported by the Guangdong Provincial Program of Science and Technology,ChinaProject(18126010)supported by the Guangxi Autonomous Regional Program of Science and Technology,ChinaProject(201802030012)supported by the Guangzhou Municipal Science and Technology Bureau,ChinaProject(2017A0109005)supported by the Sihui Plan Project of Science and Technology,China.
文摘The effect of the melt holding temperature on the morphological evolution and sedimentation behavior of iron-rich intermetallics in Al-7.0 Si-1.0 Fe-1.2 Mn-0.25 Mg alloy was investigated using an optical microscope,scanning electron microscope and differential thermal analyzer.The results show that as the holding temperature decreases,the morphologies of the primary iron-rich phase in matrix change from star-like to polygonal,and the number of the primary phases gradually decreases and disappears at 615°C.Finally,the Chinese script phases with small size,high compact and uniform distribution are obtained.In contrast,the primary iron-rich phases in slag transform into a coarser polygonal shape with lower roundness,and some of them have hollow structures.Furthermore,the area fraction of intermetallics and Fe content in the matrix decrease gradually due to the formation and growth of sludge and subsequent natural sedimentation during melt holding.With the decrease of holding temperature,the main factors hindering the settlement of the primary phases are morphology,size,and density in turn.
文摘TiN- Al2O3 composite powder was prepared by aluminothermic reduction- nitridation method with starting materials of aluminum-containing dross and rutile,and metallic aluminum in the aluminum-containing dross as reducer. The influences of synthesis temperature(600-1 400 ℃) and aluminum-containing dross addition(20% lower than theoretical value,theoretical value,20% higher than theoretical value,and 50% higher than theoretical value) on phase compositions and microstructure of the composites were investigated,and the reaction mechanism was analyzed. The results show that(1) TiN- Al2O3 composite powder can be synthesized under the experimental conditions; the main phases are TiN,α-Al2O3,a little bytownite,and MgAl2O4;(2)enhancing synthesis temperature or increasing aluminumcontaining dross addition favors the reaction of aluminothermic reduction- nitridation;(3) in the synthesized products,α-Al2O3 is platy or columnar; TiN is sub-micron granular,which reinforces and toughens the composite.
基金Funding Statement:The work was supported by the National Natural Science Foundation of China(51465014)Guangxi Innovation Driven Development Project(Grant No.AA17204021)+1 种基金the Foundation of Guangxi Key Laboratory of Optical and Electronic Materials and Devices(No.20KF-4)Foundation of Introduction of Senior Talents in Hebei Province(H192003015).
文摘In this study,the effect of sintering temperature and the addition of kaolin,a sintering agent,on the microscopic,phase,and mechanical properties of ceramics were investigated using secondary aluminum dross(SAD)as the main component in the manufacturing of ceramics.The basic phases of the ceramics were Al_(2)O_(3),MgAl_(2)O_(4),NaAl_(11)O_(17),and SiO_(2)without the addition of kaolin.The diffraction peaks of MgAl_(2)O_(4),NaAl_(11)O_(17),and SiO_(2)kept decreasing while those of Al_(2)O_(3)kept increasing with an increase in temperature.In addition,the increase in temperature promoted the growth of the grains.The grains were uniform in size and regular in distribution,with a shrinkage of 2.2%,porosity of 72.5%,bulk density of 1.076 g/cm^(3),and compressive strength of 1.12 MPa.When the sintering temperature was 1450°C,the basic phases of the ceramic after the addition of kaolin were Al_(2)O_(3),MgAl_(2)O_(4),NaAl_(11)O_(17),and SiO_(2).With the increase of kaolin,the diffraction peaks of NaAl_(11)O_(17)and SiO_(2)decreased until they disappeared,while the diffraction peaks of Al_(2)O_(3)increased significantly.When kaolin was added at 30 wt.%,the ceramics obtained had shrinkage of 18%,a porosity of 47.26%,a bulk density of 1.965 g/cm^(3),and compressive strength of 31.9 MPa.Cracks existed inside the ceramics without the addition of kaolin,while the addition of kaolin significantly changed this defect.It is shown that SAD can obtain porous ceramics with good properties at a sintering temperature of 1450°C and a kaolin addition of 30 wt.%.
基金supported by the National Key Research and Development Program of China(No.2021YFE0115900)the National Natural Science Foundation of China(Nos.52371016,51871029,and 51571023)the Opening Project of State Key Laboratory for Advanced Metals and Materials(Nos.2020-ZD02 and No.2022-Z03).
文摘This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy with high strength and formability.With the increase of Zn content,forming the coupling distribution of multiscale precipitates and iron-rich phases with a reasonable matching ratio and dispersion distribution characteristics is easy.This phenomenon induces the formation of cell-like structures with alternate distribu-tion of coarse and fine grains,and the average plasticity–strain ratio(characterizing the formability)of the pre-aged alloy with a high strength is up to 0.708.Results reveal the evolution and influence mechanisms of multiscale second-phase particles and the corresponding high formability mechanism of the alloys.The developed coupling control process exhibits considerable potential,revealing remarkable improvements in the room temperature formability of high-strength Al–Zn–Mg–Cu alloys.
基金financially supported by the National Natural Science Foundation of China(No.U21B2082)Natural Science Foundation of Beijing Municipality(No.2222065)and Fundamental Research Funds for the Central Universities(No.FRF-TP-22-02C2).
文摘The impurity iron in silicon material will seriously affect the photoelectric conversion efficiency of silicon solar cells.However,the traditional silicon purification method has the disadvantages of long cycle,high energy consumption and serious pollution.In this study,an efficient and green pulsed electric current purification technology is proposed.The electromigration effect of iron elements,the current density gradient driving of iron phase,and the gravity of iron phase all affect the migration behavior of iron phase in silicon melt under pulsed electric current.Regardless of the depth of electrode insertion into the silicon melt,the solubility of iron in silicon decreases under the pulsed electric current,which helps to form the iron phase.At the same time,the iron phase tends to sink toward the bottom under the influence of gravity.When the electrode is shallowly inserted,a non-uniform electric field is formed in the silicon melt,and the iron phase is mainly driven by the current density gradient to accelerate sink toward the bottom.When the electrode is fully inserted,an approximately uniform electric field is formed in the silicon melt,and iron elements are preferentially migrated to the cathode by electromigration,forming iron phase sinking at the cathode.The study of impurity iron migration behavior in silicon melt under pulsed electric current provides a new approach for the purification of polycrystalline silicon.