Long-term room-temperature annealing effects of InGaAs/InP quantum wells with different wells (namely triple wells and five wells embedded) and bulk InCaAs are investigated after high energy electron irradiation. It...Long-term room-temperature annealing effects of InGaAs/InP quantum wells with different wells (namely triple wells and five wells embedded) and bulk InCaAs are investigated after high energy electron irradiation. It is observed that the photoluminescence (PL) intensity of bulk InGaAs materials is enhanced after low dose electron irradiation and the PL intensity for all the three samples is degraded dramatically when the electron dose is relatively high. With respect to the room-temperature annealing, we find that the PL intensity for both samples recovers relatively fast at the initial stage. The PL performance of multiple quantum-well samples shows better recovery after irradiation compared with the results of bulk InGaAs materials. Meanwhile, the recovery speed factors of multiple quantum-well samples are relatively faster than those of the bulk InGaAs materials as well. We infer that the recovery difference between the quantum-well materials and bulk materials originates from the fact that the radiation induced defects are confined in the quantum wells as a consequence of the free energy barrier between the In0.53Ga0.47 As wells and InP barrier layers.展开更多
The results of measurements of the Raman spectra in the same group of monolayer graphene samples, successively subjected to irradiation with different ions, prolonged aging, and annealing under different conditions, a...The results of measurements of the Raman spectra in the same group of monolayer graphene samples, successively subjected to irradiation with different ions, prolonged aging, and annealing under different conditions, are considered. Changes in the position, width, and intensity of the Raman lines are analyzed in the study of the following problems: comparison of the results of irradiation with various ions, the influence of prolonged aging on the spectra of irradiated samples, the mechanism of broadening of Raman scattering lines caused by an increase in the density of radiation defects, the consequences of annealing of radiation damages in vacuum and in the atmosphere of the forming gas, the contribution of doping and lattice deformation to the shift of the position of the Raman lines after annealing. The results obtained made it possible to determine the level of stability of defects introduced by radiation, to reveal the possibility of restoring the damaged lattice using annealing. Since the results relate to graphene deposited on a widely used SiO2/Si substrate, they may be of interest when using ion irradiation to change the properties of graphene in appropriate devices.展开更多
The investigation on proton irradiation and thermal annealing of AlGaAs/GaAs solar cells has been reported.The energy of the proton irradiation is 325keV and the fluences are ranging from 5×10 10 to 1×1...The investigation on proton irradiation and thermal annealing of AlGaAs/GaAs solar cells has been reported.The energy of the proton irradiation is 325keV and the fluences are ranging from 5×10 10 to 1×10 13 cm -2 .It is demonstrated that the irradiation-induced degradation in the photovoltaic performance of the solar cells exists mainly in the short circuit current and the irradiation damage can be partly recovered by low temperature annealing at 200℃.In addition,it is found that the borosilicate cover glass has an obvious protection effect against the proton irradiation.展开更多
The evolution of helium bubbles in purity Mo was investigated by in-situ transmission electron microscopy(TEM)during 30 keV He^(+)irradiation(at 673 K and 1173 K)and post-irradiation annealing(after 30 keV He^(+)irrad...The evolution of helium bubbles in purity Mo was investigated by in-situ transmission electron microscopy(TEM)during 30 keV He^(+)irradiation(at 673 K and 1173 K)and post-irradiation annealing(after 30 keV He^(+)irradiation with the fluence of 5.74×10^(16)He^(+)/cm^(2)at 673 K).Both He^(+)irradiation and subsequently annealing induced the initiation,aggregation,and growth of helium bubbles.Temperature had a significant effect on the initiation and evolution of helium bubbles.The higher the irradiation temperature was,the larger the bubble size at the same irradiation fluence would be.At 1173 K irradiation,helium bubbles nucleated and grew preferentially at grain boundaries and showed super large size,which would induce the formation of microcracks.At the same time,the geometry of helium bubbles changed from sphericity to polyhedron.The polyhedral bubbles preferred to grow in the shape bounded by{100}planes.After statistical analysis of the characteristic parameters of helium bubbles,the functions between the average size,number density of helium bubbles,swelling rate and irradiation damage were obtained.Meanwhile,an empirical formula for calculating the size of helium bubbles during the annealing was also provided.展开更多
Yttria (Y) dispersed ferrum (Fe) films were prepared by a double-target magnetron co-sputtering method. Vacuum annealing and xenon ion irradiation were conducted to investigate the influence on the magnetic and me...Yttria (Y) dispersed ferrum (Fe) films were prepared by a double-target magnetron co-sputtering method. Vacuum annealing and xenon ion irradiation were conducted to investigate the influence on the magnetic and mechanical properties of the films. The crystal grain growth mechanism and second phase precipitation mechanism were conducted simultaneously in the vacuum annealing process. These two effects led to an opposite variation of nano-hardness and coercivity in the films. Xenon ion irradiation played a role in rapid annealing, which also affected the magnetic performance of the yttria dispersed ferrum films.展开更多
Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123,...Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123, R134a, R141b, R227ea and R245fa. Under the given conditions, the parameters including evaporating and condensing pressures, working fluid and cooling water velocities were optimized by simulated annealing algorithm. The results show that the optimal evaporating pressure increases with the heat source temperature increasing. Compared with other working fluids, R123 is the best choice for the temperature range of 100--180℃ and R141 b shows better performance when the temperature is higher than 180 ℃. Economic characteristic of system decreases rapidly with the decrease of heat source temperature. ORC system is uneconomical for the heat source temperature lower than 100℃.展开更多
This paper investigates the infrared absorption spectra of oxygen-related complexes in silicon crystals irradiated with electron (1.5 MeV) at 360 K.Two groups of samples with low [Oi] = 6.9 x 10^17 cm^-3 and high [O...This paper investigates the infrared absorption spectra of oxygen-related complexes in silicon crystals irradiated with electron (1.5 MeV) at 360 K.Two groups of samples with low [Oi] = 6.9 x 10^17 cm^-3 and high [Oi] = 1.06 x 10^18 cm^-3 were used.We found that the concentration of the VO pairs have different behaviour to the annealing temperature in different concentration of oxygen specimen,it is hardly changed in the higher concentration of oxygen specimen.It was also found that the concentration of VO2 in lower concentration of oxygen specimen gets to maximum at 450 ℃ and then dissapears at 500 ℃,accompanied with the appearing of VO3. For both kinds of specimens,the concentration of VO3 reachs to maximum at 550 ℃ and does not disappear completely at 600 ℃.展开更多
South China can be divided into four metallogenic belts:The Middle-Lower Yangtze Metallogenic Belt(MLYB),Qinzhou-Hangzhou Metallogenic Belt(QHMB),Nanling Metallogenic Belt(NLMB),and Wuyi Metallogenic Belt(WYMB).The ma...South China can be divided into four metallogenic belts:The Middle-Lower Yangtze Metallogenic Belt(MLYB),Qinzhou-Hangzhou Metallogenic Belt(QHMB),Nanling Metallogenic Belt(NLMB),and Wuyi Metallogenic Belt(WYMB).The major mineralization in the four metallogenic belts is granite-related Cu–Au–Mo and porphyrite Fe-apatite,porphyry Cu(Au),and epithermal Pb–Zn–Ag,hydrothermal Cu–Au–Pb–Zn–Ag,and granite-related skarn-type and quartz-veins W–Sn,respectively.Low-temperature thermochronology,including fissiontrack and U-Th/He dating,has been widely used to constrain tectonic thermal evolution and ore deposits preservation.Understanding fission-track annealing and He diffusion kinetics in accessory minerals,such as zircon and apatite,is essential for dating and applications.In this study,previous zircon fission-track(ZFT)and apatite fission-track(AFT)ages in South China were collected.The result shows that the ZFT ages are mainly concentrated at140–90 Ma,and the AFT ages are mainly distributed at70–40 Ma.The age distribution and inversion temperature–time paths reveal heterogeneous exhumation histories in South China.The MLYB experienced Late CretaceousCenozoic extremely slow exhumation after rapid cooling in the Early Cretaceous.The northern QHMB(i.e.from southern Anhui province to the Hangzhou Bay)had a relatively faster rate of uplifting and denudation than the southern QHMB in the Cretaceous.Subsequently,the northern QHMB rapidly exhumed,while the continuously slow exhumation operated the southern QHMB in the Cenozoic.The southern NLMB had a more rapid cooling rate than the northern NLMB during the Cretaceous time,and the whole NLMB experienced rapid cooling in the Cenozoic,except that the southern Hunan province had the most rapid cooling rate.The WYMB possibly had experienced slow exhumation since the Late Cretaceous.The exhumation thickness of the four metallogenic belts since90 Ma is approximately calculated as follows:the MLYB≤3.5 km,the northern QHMB concentrated at3.5–5.5 km,and the southern QHMB usually less than3.5 km,the NLMB 4.5–6.5 km and the WYMB<3.5 km.The exhumation thickness of the NLMB is corresponding to the occurrence of the world-class W deposits,which were emplaced into a deeper depth of 1.5–8 km.As such,we infer that the uplifting and denudation processes of the four metallogenic belts have also played an important role in dominated ore deposits.展开更多
A low-alloyed Mg-1.2Zn-0.1Ca(wt.%)alloy was fabricated via low-temperature extrusion and annealing at 250℃for different times(10,30,and 90 min)to attain heterostructures with different fine-grained fractions,focusing...A low-alloyed Mg-1.2Zn-0.1Ca(wt.%)alloy was fabricated via low-temperature extrusion and annealing at 250℃for different times(10,30,and 90 min)to attain heterostructures with different fine-grained fractions,focusing on the effect of heterostructure on the mechanical properties.Partial dynamic recrystallization(RX)occurred during extrusion at 150℃,and a lamellar structure consisting of fine RX grains and coarse unRX grains was obtained.The subsequent annealing promoted static RX in the as-extruded alloy,leading to an increased fine-grained fraction from 67%to 95%.Meanwhile,the co-segregation of Zn and Ca atoms impeded the migration of grain boundaries,thus achieving a fine grain size of 0.8–1.6μm.The sample annealed for 10 min with a fine-grained fraction of 73%and an average RX grain size of 0.9μm exhibited a superior combination of high yield strength(305 MPa)and good ductility(20%).In comparison,an excellent elongation of 30%was achieved in the alloy with a nearly fully-RXed microstructure and an average grain size of 1.6μm after 90 min annealing,despite a lower yield strength of 228 MPa.In unRX grains,the hard orientation with(01–10)parallel to the extrusion direction and high-density dislocations made it more difficult to deform compared with the RX grains,thus producing hetero-deformation induced(HDI)strengthening.Besides fine grains and high-density dislocations,HDI strengthening is the key to achieving the superior mechanical properties of the low-alloyed Mg alloy.展开更多
The Au ion-irradiation experiments of GH3535 alloy,a candidate alloy structural material for molten salt reactor,was carried out in this study.Herein,isochronous annealing experiments were conducted from 200 to 850 ℃...The Au ion-irradiation experiments of GH3535 alloy,a candidate alloy structural material for molten salt reactor,was carried out in this study.Herein,isochronous annealing experiments were conducted from 200 to 850 ℃ to clarify the evolution behavior of damage defects with increasing temperature.The coarsening of dislocation loops and formation and dissolution of precipitates with increasing annealing temperature were characterized by transmission electron microscopy.Nanoindentation was performed to measure the variation of hardness caused by irradiation.Additionally,the relationship between irradiation hardening and microstructure evolution was established.This study lays a foundation for the evaluation of irradiation damage properties of GH3535 alloy at different annealing temperatures.展开更多
Remarkable room-temperature ferromagnetism was observed both in undoped and Cu-doped rutile TiO2 single crystals(SCs).To tune their magnetism,Ar ion irradiation was quantitatively performed on the two crystals in wh...Remarkable room-temperature ferromagnetism was observed both in undoped and Cu-doped rutile TiO2 single crystals(SCs).To tune their magnetism,Ar ion irradiation was quantitatively performed on the two crystals in which the saturation magnetizations for the samples were enhanced distinctively.The post-irradiation led to a spongelike layer in the near surface of the Cu-doped TiO2.Meanwhile,a new CuO-like species present in the sample was found to be dissolved after the post-irradiation.Analyzing the magnetization data unambiguously reveals that the experimentally observed ferromagnetism is related to the intrinsic defects rather than the exotic Cu ions,while these ions are directly involved in boosting the absorption in the visible region.展开更多
In this paper we present experimentaI results on irradiation effects of C_(60) fims induced by 2.0 GeV^(136)Xe.The C_(60) fims were prepared by vacuum evaporation at a temperature close to 450℃ onto Al foils.The C_(6...In this paper we present experimentaI results on irradiation effects of C_(60) fims induced by 2.0 GeV^(136)Xe.The C_(60) fims were prepared by vacuum evaporation at a temperature close to 450℃ onto Al foils.The C_(60) layers on Al foils were arranged as a foil stack with the intention of using them to search for preliminary information concerning the overall depth distribution of damage following 2.0 GeV Xe ions irradiations.To展开更多
CdS films prepared with chemical pyrolysis deposition (CPD) at differ- ent temperature during film growth were characterized by XRD. Hexagon-like struc- ture appeared at the temperature of 350-500℃, while wurtzite ph...CdS films prepared with chemical pyrolysis deposition (CPD) at differ- ent temperature during film growth were characterized by XRD. Hexagon-like struc- ture appeared at the temperature of 350-500℃, while wurtzite phase was observed at temperature of 540℃ during film growth. Also CdS films prepared by CPD at 400℃ were undergone post annealing at different temperature of 200-600℃ or post Ar+ ion irradiation. It is found that wurtzite phase happened when the annealing temperature rose to 600℃. And hexagon-like structure existed at the annealing temperature from 25℃ to near 500℃. Ar+ ion irradiation could not cause phase transformation. but induce some preferred orientations and an increase in grain size for the CdS films.展开更多
Hot-swaging yields a high ultimate tensile strength of 712 MPa but a limited tensile ductility with the total elongation of3.6%at a testing temperature of 200℃in a representative W-0.5wt.%ZrC alloy.In this work,the e...Hot-swaging yields a high ultimate tensile strength of 712 MPa but a limited tensile ductility with the total elongation of3.6%at a testing temperature of 200℃in a representative W-0.5wt.%ZrC alloy.In this work,the evolution of Vickers microhardness with annealing temperatures is investigated in detail,which contributes to a rough index chart to guide the search for an optimized post-annealing temperature.Through the post-annealing around 1300℃,an outstanding tensile ductility at200℃,including a uniform elongation of 14%and a total elongation of~25%,has been achieved without the sacrifice of its strength.The evolution of dislocations and grain structures with the annealing temperatures accessed through backscattered scanning electron microscope and transmission electron microscope analysis reveals that the improved low-temperature tensile ductility has resulted from the reduction of residual dislocations and dislocation tanglement via the static recovery,which provides more room to accommodate dislocations,and hence stronger strain hardening ability and tensile ductility.展开更多
Physical vapor deposition method was employed to deposit antimony telluride (Sb2Te3) crystals in a dual-zone furnace. The microstructure, surface topography and composition of samples were characterized using X-ray ...Physical vapor deposition method was employed to deposit antimony telluride (Sb2Te3) crystals in a dual-zone furnace. The microstructure, surface topography and composition of samples were characterized using X-ray diffraction, atomic force and scanning electron microscopy. Seebeck coefficient (Sic), electrical conductivity (σ⊥c) as well as power factor (PF) were enhanced for pure Sb2Te3 samples upon annealing, and the samples annealed at 473 K exhibited the highest PF of 3.16 × 10^-3 W m-1K-2 with an enhancement of 22% in the figure of merit (Z). When the delivered dose of 60Co gamma radiation was increased from 0 to 30 kGy in the stoichiometric crystals, σ⊥c decreased due to the decrease in mobility. As a result of the increase in S, PF and Z improved by 12.11 and 13.7%, respectively, in the 30 kGy gamma- irradiated crystals. Both RH (BIIc) and S⊥c were positive, suggesting that the prepared Sb2Te3 crystals retained the p-type semiconductivity after these treatments.展开更多
文摘Long-term room-temperature annealing effects of InGaAs/InP quantum wells with different wells (namely triple wells and five wells embedded) and bulk InCaAs are investigated after high energy electron irradiation. It is observed that the photoluminescence (PL) intensity of bulk InGaAs materials is enhanced after low dose electron irradiation and the PL intensity for all the three samples is degraded dramatically when the electron dose is relatively high. With respect to the room-temperature annealing, we find that the PL intensity for both samples recovers relatively fast at the initial stage. The PL performance of multiple quantum-well samples shows better recovery after irradiation compared with the results of bulk InGaAs materials. Meanwhile, the recovery speed factors of multiple quantum-well samples are relatively faster than those of the bulk InGaAs materials as well. We infer that the recovery difference between the quantum-well materials and bulk materials originates from the fact that the radiation induced defects are confined in the quantum wells as a consequence of the free energy barrier between the In0.53Ga0.47 As wells and InP barrier layers.
文摘The results of measurements of the Raman spectra in the same group of monolayer graphene samples, successively subjected to irradiation with different ions, prolonged aging, and annealing under different conditions, are considered. Changes in the position, width, and intensity of the Raman lines are analyzed in the study of the following problems: comparison of the results of irradiation with various ions, the influence of prolonged aging on the spectra of irradiated samples, the mechanism of broadening of Raman scattering lines caused by an increase in the density of radiation defects, the consequences of annealing of radiation damages in vacuum and in the atmosphere of the forming gas, the contribution of doping and lattice deformation to the shift of the position of the Raman lines after annealing. The results obtained made it possible to determine the level of stability of defects introduced by radiation, to reveal the possibility of restoring the damaged lattice using annealing. Since the results relate to graphene deposited on a widely used SiO2/Si substrate, they may be of interest when using ion irradiation to change the properties of graphene in appropriate devices.
文摘The investigation on proton irradiation and thermal annealing of AlGaAs/GaAs solar cells has been reported.The energy of the proton irradiation is 325keV and the fluences are ranging from 5×10 10 to 1×10 13 cm -2 .It is demonstrated that the irradiation-induced degradation in the photovoltaic performance of the solar cells exists mainly in the short circuit current and the irradiation damage can be partly recovered by low temperature annealing at 200℃.In addition,it is found that the borosilicate cover glass has an obvious protection effect against the proton irradiation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1967211,U1832112,and 11975191).
文摘The evolution of helium bubbles in purity Mo was investigated by in-situ transmission electron microscopy(TEM)during 30 keV He^(+)irradiation(at 673 K and 1173 K)and post-irradiation annealing(after 30 keV He^(+)irradiation with the fluence of 5.74×10^(16)He^(+)/cm^(2)at 673 K).Both He^(+)irradiation and subsequently annealing induced the initiation,aggregation,and growth of helium bubbles.Temperature had a significant effect on the initiation and evolution of helium bubbles.The higher the irradiation temperature was,the larger the bubble size at the same irradiation fluence would be.At 1173 K irradiation,helium bubbles nucleated and grew preferentially at grain boundaries and showed super large size,which would induce the formation of microcracks.At the same time,the geometry of helium bubbles changed from sphericity to polyhedron.The polyhedral bubbles preferred to grow in the shape bounded by{100}planes.After statistical analysis of the characteristic parameters of helium bubbles,the functions between the average size,number density of helium bubbles,swelling rate and irradiation damage were obtained.Meanwhile,an empirical formula for calculating the size of helium bubbles during the annealing was also provided.
基金support by the National Natural Science Foundation of China (No. 61076003)the National Basic Research and Development Program of China (Nos. 2010CB731600 and 2010CB832900)
文摘Yttria (Y) dispersed ferrum (Fe) films were prepared by a double-target magnetron co-sputtering method. Vacuum annealing and xenon ion irradiation were conducted to investigate the influence on the magnetic and mechanical properties of the films. The crystal grain growth mechanism and second phase precipitation mechanism were conducted simultaneously in the vacuum annealing process. These two effects led to an opposite variation of nano-hardness and coercivity in the films. Xenon ion irradiation played a role in rapid annealing, which also affected the magnetic performance of the yttria dispersed ferrum films.
基金Project(2009GK2009) supported by Science and Technology Department Funds of Hunan Province,ChinaProject(08C26224302178) supported by Innovation Fund for Technology Based Firms of China
文摘Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123, R134a, R141b, R227ea and R245fa. Under the given conditions, the parameters including evaporating and condensing pressures, working fluid and cooling water velocities were optimized by simulated annealing algorithm. The results show that the optimal evaporating pressure increases with the heat source temperature increasing. Compared with other working fluids, R123 is the best choice for the temperature range of 100--180℃ and R141 b shows better performance when the temperature is higher than 180 ℃. Economic characteristic of system decreases rapidly with the decrease of heat source temperature. ORC system is uneconomical for the heat source temperature lower than 100℃.
基金Project supported by the National Natural Science Foundation of China (Grant No 50872028)Natural Science Foundation of Hebei Province of China (Grant Nos E200500048 and E2008000079)Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20050080006)
文摘This paper investigates the infrared absorption spectra of oxygen-related complexes in silicon crystals irradiated with electron (1.5 MeV) at 360 K.Two groups of samples with low [Oi] = 6.9 x 10^17 cm^-3 and high [Oi] = 1.06 x 10^18 cm^-3 were used.We found that the concentration of the VO pairs have different behaviour to the annealing temperature in different concentration of oxygen specimen,it is hardly changed in the higher concentration of oxygen specimen.It was also found that the concentration of VO2 in lower concentration of oxygen specimen gets to maximum at 450 ℃ and then dissapears at 500 ℃,accompanied with the appearing of VO3. For both kinds of specimens,the concentration of VO3 reachs to maximum at 550 ℃ and does not disappear completely at 600 ℃.
基金the National Science Fund for Distinguished Young Scholars(42025301)Natural Science Foundation of China(41673057)。
文摘South China can be divided into four metallogenic belts:The Middle-Lower Yangtze Metallogenic Belt(MLYB),Qinzhou-Hangzhou Metallogenic Belt(QHMB),Nanling Metallogenic Belt(NLMB),and Wuyi Metallogenic Belt(WYMB).The major mineralization in the four metallogenic belts is granite-related Cu–Au–Mo and porphyrite Fe-apatite,porphyry Cu(Au),and epithermal Pb–Zn–Ag,hydrothermal Cu–Au–Pb–Zn–Ag,and granite-related skarn-type and quartz-veins W–Sn,respectively.Low-temperature thermochronology,including fissiontrack and U-Th/He dating,has been widely used to constrain tectonic thermal evolution and ore deposits preservation.Understanding fission-track annealing and He diffusion kinetics in accessory minerals,such as zircon and apatite,is essential for dating and applications.In this study,previous zircon fission-track(ZFT)and apatite fission-track(AFT)ages in South China were collected.The result shows that the ZFT ages are mainly concentrated at140–90 Ma,and the AFT ages are mainly distributed at70–40 Ma.The age distribution and inversion temperature–time paths reveal heterogeneous exhumation histories in South China.The MLYB experienced Late CretaceousCenozoic extremely slow exhumation after rapid cooling in the Early Cretaceous.The northern QHMB(i.e.from southern Anhui province to the Hangzhou Bay)had a relatively faster rate of uplifting and denudation than the southern QHMB in the Cretaceous.Subsequently,the northern QHMB rapidly exhumed,while the continuously slow exhumation operated the southern QHMB in the Cenozoic.The southern NLMB had a more rapid cooling rate than the northern NLMB during the Cretaceous time,and the whole NLMB experienced rapid cooling in the Cenozoic,except that the southern Hunan province had the most rapid cooling rate.The WYMB possibly had experienced slow exhumation since the Late Cretaceous.The exhumation thickness of the four metallogenic belts since90 Ma is approximately calculated as follows:the MLYB≤3.5 km,the northern QHMB concentrated at3.5–5.5 km,and the southern QHMB usually less than3.5 km,the NLMB 4.5–6.5 km and the WYMB<3.5 km.The exhumation thickness of the NLMB is corresponding to the occurrence of the world-class W deposits,which were emplaced into a deeper depth of 1.5–8 km.As such,we infer that the uplifting and denudation processes of the four metallogenic belts have also played an important role in dominated ore deposits.
基金the Key-Area Research and Development Program of Guangdong Province(No.2020B010186002)the Natural Science Foundation of Guangdong for Research Team(No.2015A030312003)。
文摘A low-alloyed Mg-1.2Zn-0.1Ca(wt.%)alloy was fabricated via low-temperature extrusion and annealing at 250℃for different times(10,30,and 90 min)to attain heterostructures with different fine-grained fractions,focusing on the effect of heterostructure on the mechanical properties.Partial dynamic recrystallization(RX)occurred during extrusion at 150℃,and a lamellar structure consisting of fine RX grains and coarse unRX grains was obtained.The subsequent annealing promoted static RX in the as-extruded alloy,leading to an increased fine-grained fraction from 67%to 95%.Meanwhile,the co-segregation of Zn and Ca atoms impeded the migration of grain boundaries,thus achieving a fine grain size of 0.8–1.6μm.The sample annealed for 10 min with a fine-grained fraction of 73%and an average RX grain size of 0.9μm exhibited a superior combination of high yield strength(305 MPa)and good ductility(20%).In comparison,an excellent elongation of 30%was achieved in the alloy with a nearly fully-RXed microstructure and an average grain size of 1.6μm after 90 min annealing,despite a lower yield strength of 228 MPa.In unRX grains,the hard orientation with(01–10)parallel to the extrusion direction and high-density dislocations made it more difficult to deform compared with the RX grains,thus producing hetero-deformation induced(HDI)strengthening.Besides fine grains and high-density dislocations,HDI strengthening is the key to achieving the superior mechanical properties of the low-alloyed Mg alloy.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.12022515 and 11975304)the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.Y202063)。
文摘The Au ion-irradiation experiments of GH3535 alloy,a candidate alloy structural material for molten salt reactor,was carried out in this study.Herein,isochronous annealing experiments were conducted from 200 to 850 ℃ to clarify the evolution behavior of damage defects with increasing temperature.The coarsening of dislocation loops and formation and dissolution of precipitates with increasing annealing temperature were characterized by transmission electron microscopy.Nanoindentation was performed to measure the variation of hardness caused by irradiation.Additionally,the relationship between irradiation hardening and microstructure evolution was established.This study lays a foundation for the evaluation of irradiation damage properties of GH3535 alloy at different annealing temperatures.
基金Project supported by the National Natural Science Foundation of China(Grant No.11575074)the Open Project of State Key laboratory of Crystal Material,Shandong University,China(Grant No.KF1311)+2 种基金the Open Project of Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University,China(Grant No.LZUMMM2012003)the Open Project of Key Laboratory of Beam Technology and Material Modification of Ministry of Education,Beijing Normal University,China(Grant No.201204)the Fundamental Research Funds for the Central Universities,China(Grant No.lzujbky-2015-240)
文摘Remarkable room-temperature ferromagnetism was observed both in undoped and Cu-doped rutile TiO2 single crystals(SCs).To tune their magnetism,Ar ion irradiation was quantitatively performed on the two crystals in which the saturation magnetizations for the samples were enhanced distinctively.The post-irradiation led to a spongelike layer in the near surface of the Cu-doped TiO2.Meanwhile,a new CuO-like species present in the sample was found to be dissolved after the post-irradiation.Analyzing the magnetization data unambiguously reveals that the experimentally observed ferromagnetism is related to the intrinsic defects rather than the exotic Cu ions,while these ions are directly involved in boosting the absorption in the visible region.
文摘In this paper we present experimentaI results on irradiation effects of C_(60) fims induced by 2.0 GeV^(136)Xe.The C_(60) fims were prepared by vacuum evaporation at a temperature close to 450℃ onto Al foils.The C_(60) layers on Al foils were arranged as a foil stack with the intention of using them to search for preliminary information concerning the overall depth distribution of damage following 2.0 GeV Xe ions irradiations.To
基金Partly supported by the Visiting Scholar Funds of The Key Laboratory in University of China
文摘CdS films prepared with chemical pyrolysis deposition (CPD) at differ- ent temperature during film growth were characterized by XRD. Hexagon-like struc- ture appeared at the temperature of 350-500℃, while wurtzite phase was observed at temperature of 540℃ during film growth. Also CdS films prepared by CPD at 400℃ were undergone post annealing at different temperature of 200-600℃ or post Ar+ ion irradiation. It is found that wurtzite phase happened when the annealing temperature rose to 600℃. And hexagon-like structure existed at the annealing temperature from 25℃ to near 500℃. Ar+ ion irradiation could not cause phase transformation. but induce some preferred orientations and an increase in grain size for the CdS films.
基金financially supported by the National Key Research and Development Program of China (Grant Nos.2019YFE03110200,2019YFE03120001 and 2022YFE03140002)the National Natural Science Foundation of China (Grant Nos.:52173303,11735015,52171084,U1967211)+2 种基金an Anhui Provincial Natural Science Foundation (No.1908085J17)the Major Science and Technology Projects of Anhui Province (No.202103a05020016)a HFIPS Director’s Fund (YZJJZX202012,YZJJ202206-CX,BJPY2021A05)。
文摘Hot-swaging yields a high ultimate tensile strength of 712 MPa but a limited tensile ductility with the total elongation of3.6%at a testing temperature of 200℃in a representative W-0.5wt.%ZrC alloy.In this work,the evolution of Vickers microhardness with annealing temperatures is investigated in detail,which contributes to a rough index chart to guide the search for an optimized post-annealing temperature.Through the post-annealing around 1300℃,an outstanding tensile ductility at200℃,including a uniform elongation of 14%and a total elongation of~25%,has been achieved without the sacrifice of its strength.The evolution of dislocations and grain structures with the annealing temperatures accessed through backscattered scanning electron microscope and transmission electron microscope analysis reveals that the improved low-temperature tensile ductility has resulted from the reduction of residual dislocations and dislocation tanglement via the static recovery,which provides more room to accommodate dislocations,and hence stronger strain hardening ability and tensile ductility.
文摘Physical vapor deposition method was employed to deposit antimony telluride (Sb2Te3) crystals in a dual-zone furnace. The microstructure, surface topography and composition of samples were characterized using X-ray diffraction, atomic force and scanning electron microscopy. Seebeck coefficient (Sic), electrical conductivity (σ⊥c) as well as power factor (PF) were enhanced for pure Sb2Te3 samples upon annealing, and the samples annealed at 473 K exhibited the highest PF of 3.16 × 10^-3 W m-1K-2 with an enhancement of 22% in the figure of merit (Z). When the delivered dose of 60Co gamma radiation was increased from 0 to 30 kGy in the stoichiometric crystals, σ⊥c decreased due to the decrease in mobility. As a result of the increase in S, PF and Z improved by 12.11 and 13.7%, respectively, in the 30 kGy gamma- irradiated crystals. Both RH (BIIc) and S⊥c were positive, suggesting that the prepared Sb2Te3 crystals retained the p-type semiconductivity after these treatments.