A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in...A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in the FeCoNiCrbased HE As with γ' precipitates,these samples are irradiated by 100-keV helium ions with a fluence of 5 × 10^(20) ions/m^(2) at 293 K and 673 K,respectively.And the samples irradiated at room temperature are annealed at different temperatures to examine the diffusion behavior of helium bubbles.Transmission electron microscope(TEM) is employed to characterize the structural morphology of precipitated nanoparticles and the evolution of helium bubbles.Experimental results reveal that nanosized,spherical,dispersed,coherent,and ordered L1_(2)-type Ni_(3)Ti γ' precipitations are introduced into FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs by means of ageing treatments at temperatures between 1073 K and 1123 K.Under the ageing treatment conditions adopted in this work,γ' nanoparticles are precipitated in FeCoNiCr(Ni_(3)Ti)_(0.1) HE As,with average diameters of 15.80 nm,37.09 nm,and 62.50 nm,respectively.The average sizes of helium bubbles observed in samples after 673-K irradiation are 1.46 nm,1.65 nm,and 1.58 nm,respectively.The improvement in the irradiation resistance of FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs is evidenced by the diminution in bubbles size.Furthermore,the FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs containing γ' precipitates of 15.8 nm exhibits the minimum size and density of helium bubbles,which can be ascribed to the considerable helium trapping effects of heterogeneous coherent phase boundaries.Subsequently,annealing experiments conducted after 293-K irradiation indicate that HEAs containing precipitated phases exhibits smaller apparent activation energy(E_(a)) for helium bubbles,resulting in larger helium bubble size.This study provides guidance for improving the irradiation resistance of L1_(2)-strengthened high-entropy alloy.展开更多
The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to eluc...The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to elucidate the susceptibility of different grain boundaries(GBs)to helium-induced embrittlement,the tensile fracture processes of 10 types of GBs with and without helium bubbles in body-centered cubic(bcc)iron at the relevant service temperature of 600 K were investigated via molecular dynamics methods.The results indicate that in the absence of helium bubbles,the GBs studied here can be classified into two distinct categories:brittle GBs and ductile GBs.The atomic scale analysis shows that the plastic deformation of ductile GB at high temperatures originates from complex plastic deformation mechanisms,including the Bain/Burgers path phase transition and deformation twinning,in which the Bain path phase transition is the most dominant plastic deformation mechanism.However,the presence of helium bubbles severely inhibits the plastic deformation channels of the GBs,resulting in a significant decrease in elongation at fractures.For bubble-decorated GBs,the ultimate tensile strength increases with the increase in the misorientation angle.Interestingly,the coherent twin boundary∑3{112}was found to maintain relatively high fracture strength and maximum failure strain under the influence of helium bubbles.展开更多
In this paper, the pressure state of the helium bubble in titanium is simulated by a molecular dynamics (MD) method. First, the possible helium/vacancy ratio is determined according to therelation between the bubble...In this paper, the pressure state of the helium bubble in titanium is simulated by a molecular dynamics (MD) method. First, the possible helium/vacancy ratio is determined according to therelation between the bubble pressure and helium/vacancy ratio; then the dependences of the helium bubble pressure on the bubble radius at different temperatures are studied. It is shown that the product of the bubble pressure and the radius is approximately a constant, a result justifying the pressure-radius relation predicted by thermodynamics-based theory for gas bubble. Furthermore, a state equation of the helium bubble is established based on the MD calculations. Comparison between the results obtained by the state equation and corresponding experimental data shows that the state equation can describe reasonably the state of helium bubble and thus could be used for Monte Carlo simulations of the evolution of helium bubble in metals.展开更多
The evolution of helium bubbles in purity Mo was investigated by in-situ transmission electron microscopy(TEM)during 30 keV He^(+)irradiation(at 673 K and 1173 K)and post-irradiation annealing(after 30 keV He^(+)irrad...The evolution of helium bubbles in purity Mo was investigated by in-situ transmission electron microscopy(TEM)during 30 keV He^(+)irradiation(at 673 K and 1173 K)and post-irradiation annealing(after 30 keV He^(+)irradiation with the fluence of 5.74×10^(16)He^(+)/cm^(2)at 673 K).Both He^(+)irradiation and subsequently annealing induced the initiation,aggregation,and growth of helium bubbles.Temperature had a significant effect on the initiation and evolution of helium bubbles.The higher the irradiation temperature was,the larger the bubble size at the same irradiation fluence would be.At 1173 K irradiation,helium bubbles nucleated and grew preferentially at grain boundaries and showed super large size,which would induce the formation of microcracks.At the same time,the geometry of helium bubbles changed from sphericity to polyhedron.The polyhedral bubbles preferred to grow in the shape bounded by{100}planes.After statistical analysis of the characteristic parameters of helium bubbles,the functions between the average size,number density of helium bubbles,swelling rate and irradiation damage were obtained.Meanwhile,an empirical formula for calculating the size of helium bubbles during the annealing was also provided.展开更多
Helium bubbles,which are typical radiation microstructures observed in metals or alloys,are usually investigated using transmission electron microscopy(TEM).However,the investigation requires human inputs to locate an...Helium bubbles,which are typical radiation microstructures observed in metals or alloys,are usually investigated using transmission electron microscopy(TEM).However,the investigation requires human inputs to locate and mark the bubbles in the acquired TEM images,rendering this task laborious and prone to error.In this paper,a machine learning method capable of automatically identifying and analyzing TEM images of helium bubbles is proposed,thereby improving the efficiency and reliability of the investigation.In the proposed technique,helium bubble clusters are first determined via the densitybased spatial clustering of applications with noise algorithm after removing the background and noise pixels.For each helium bubble cluster,the number of helium bubbles is determined based on the cluster size depending on the specific image resolution.Finally,the helium bubble clusters are analyzed using a Gaussian mixture model,yielding the location and size information on the helium bubbles.In contrast to other approaches that require training using numerous annotated images to establish an accurate classifier,the parameters used in the established model are determined using a small number of TEM images.The results of the model formulated according to the proposed approach achieved a higher F1 score validated through some helium bubble images manually marked.Furthermore,the established model can identify bubble-like objects that humans cannot facilely identify.This computationally efficient method achieves object recognition for material structure identification that may be advantageous to scientific work.展开更多
The spallation behaviors of Al+0.2wt% ^10B targets and neutron irradiated Al+0.2wt% ^10B targets with 5nm radius helium bubble subjected to direct laser ablation are presented. It is found that the spall strength in...The spallation behaviors of Al+0.2wt% ^10B targets and neutron irradiated Al+0.2wt% ^10B targets with 5nm radius helium bubble subjected to direct laser ablation are presented. It is found that the spall strength increases significantly with the tensile strain rate, and the helium bubble or boron inclusions in aluminum reduces the spall strength of materials by 34%. However, slight difference is observed in the spall strength of unirradiated samples compared with the irradiated sample with helium bubbles.展开更多
Solid helium bubbles were directly observed in the helium ion implanted tungsten(W), by different transmission electron microscopy(TEM) techniques at room temperature. The diameters of these solid helium bubbles r...Solid helium bubbles were directly observed in the helium ion implanted tungsten(W), by different transmission electron microscopy(TEM) techniques at room temperature. The diameters of these solid helium bubbles range from1 nm to 8 nm in diameter with the mean bubble size about 3 nm. The selected area electron diffraction(SAED) and fast Fourier transform(FFT) images revealed that solid helium bubbles possess body-centered cubic(bcc) structure with a lattice constant of 0.447 nm. High-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)images further confirmed the existence of helium bubble in tungsten. The present findings provide an atomic level view of the microstructure evolution of helium in the materials, and revealed the existence of solid helium bubbles in materials.展开更多
Understanding the evolution of irradiation-induced defects is of critical importance for the performance estimation of nuclear materials under irradiation.Hereby,we systematically investigate the influence of He on th...Understanding the evolution of irradiation-induced defects is of critical importance for the performance estimation of nuclear materials under irradiation.Hereby,we systematically investigate the influence of He on the evolution of Frenkel pairs and collision cascades in tungsten(W)via using the object kinetic Monte Carlo(OKMC)method.Our findings suggest that the presence of He has significant effect on the evolution of irradiation-induced defects.On the one hand,the presence of He can facilitate the recombination of vacancies and self-interstitial atoms(SIAs)in W.This can be attributed to the formation of immobile He-SIA complexes,which increases the annihilation probability of vacancies and SIAs.On the other hand,due to the high stability and low mobility of He-vacancy complexes,the growth of large vacancy clusters in W is kinetically suppressed by He addition.Specially,in comparison with the injection of collision cascades and He in sequential way at 1223 K,the average sizes of surviving vacancy clusters in W via simultaneous way are smaller,which is in good agreement with previous experimental observations.These results advocate that the impurity with low concentration has significant effect on the evolution of irradiation-induced defects in materials,and contributes to our understanding of W performance under irradiation.展开更多
Nickel-based alloys have been considered as candidate structural materials used in generation IV nuclear reactors serving at high temperatures.In the present study,alloy 617 was irradiated with 180-keV helium ions to ...Nickel-based alloys have been considered as candidate structural materials used in generation IV nuclear reactors serving at high temperatures.In the present study,alloy 617 was irradiated with 180-keV helium ions to a fluence of 3.6×10^(17) ions/cm^(2) at room temperature.Throughout the cross-section transmission electron microscopy(TEM)image,numerous over-pressurized helium bubbles in spherical shape are observed with the actual concentration profile a little deeper than the SRIM predicted result.Post-implantation annealing was conducted at 700℃for 2 h to investigate the bubble evolution.The long-range migration of helium bubbles occurred during the annealing process,which makes the bubbles of the peak region transform into a faceted shape as well.Then the coarsening mechanism of helium bubbles at different depths is discussed and related to the migration and coalescence(MC)mechanism.With the diffusion of nickel atoms slowed down by the alloy elements,the migration and coalescence of bubbles are suppressed in alloy 617,leading to a better helium irradiation resistance.展开更多
We report helium ion irradiation experiments for a new type of dispersion-strengthened NiMo-Y_(2)O_(3)alloy with three different irradiation doses and varying irradiation dose rates at 750℃to evaluate its helium-indu...We report helium ion irradiation experiments for a new type of dispersion-strengthened NiMo-Y_(2)O_(3)alloy with three different irradiation doses and varying irradiation dose rates at 750℃to evaluate its helium-induced damage behavior.Transmission electron microscopy was used to reveal the evolution of helium bubbles after irradiation.The experimental results show that with increasing ion dose,the number density of helium bubbles increases continuously.However,the mean size of helium bubbles first increases and then decreases,mainly due to the varied ion dose rates.The volume fractions of helium bubbles in the three investigated samples after irradiation are 0.15%,0.32%,and 0.27%,which are lower than that of the Hastelloy N alloy(0.58%)after similar irradiation conditions.This indicates that the NiMo-Y_(2)O_(3)alloy exhibits better helium-induced-swelling resistance than the Hastelloy N alloy,highlighting its potential applicability to MSRs,from the perspective of irradiation performance.展开更多
Dislocation and grain boundary have great influence on helium behavior in materials. In this paper, the helium bubble coalescence in titanium with dislocations was simulated using molecular dynamics method. The result...Dislocation and grain boundary have great influence on helium behavior in materials. In this paper, the helium bubble coalescence in titanium with dislocations was simulated using molecular dynamics method. The results show that, when the second helium bubble nucleates near the slip plane, it grows toward the first helium bubble which lies at the dislocation core till they coalesce with each other. However, it is not easy for the coalescence to occur if the two helium bubbles lie in different atomic layers in (001) plane. If the second helium bubble is nucleated on the side of the slip plane with full atomic layers, the second helium bubble growth could lead to the movement of the first helium bubble toward the other sides of the slip plane. The growth rate and direction of the second helium bubble are closely related to the pressure around it.展开更多
Modified novel high silicon steel (MNHS, a newly developed reduced-activation martensitic alloy) and commercial alloy Tgl are implanted with 200 keV He2+ ions to a dose of 5 × 1020 ions/m2 at 300, 450 and 560~...Modified novel high silicon steel (MNHS, a newly developed reduced-activation martensitic alloy) and commercial alloy Tgl are implanted with 200 keV He2+ ions to a dose of 5 × 1020 ions/m2 at 300, 450 and 560~C. Transmission electron microscopy (TEM) is used to characterize the size and morphology of He bubbles. With the increase of the implantation temperature, TEM observations indicate that bubbles increase in size and the proportion of 'brick shaped' cuboid bubbles increases while the proportion of polyhedral bubbles decreases in both the steel samples. For the samples implanted at the same temperature, the average size of He bubbles in MNHS is smaller than that in T91. This might be due to the abundance of boundaries and precipitates in MNHS, which provide additional sites for the trapping of He atoms, thus reduce the susceptibility of MNHS to He embrittlement.展开更多
The effects of 400 keV helium ion irradiation dose and temperature on the microstructure of the Ti3SiC2 ceramic were systematically investigated by grazing incidence x-ray diffraction, scanning electron microscopy, an...The effects of 400 keV helium ion irradiation dose and temperature on the microstructure of the Ti3SiC2 ceramic were systematically investigated by grazing incidence x-ray diffraction, scanning electron microscopy, and transmission electron microscopy.The helium irradiation experiments were performed at both room temperature(RT) and 500℃ with a fluence up to 2.0 × 1017 He+/cm2 that resulted in a maximum damage of 9.6 displacements per atom.Our results demonstrate that He irradiations produce a large number of nanometer defects in Ti3SiC2 lattice and then cause the dissociation of Ti3SiC2 to TiC nano-grains with the increasing He fluence.Irradiation induced cell volume swelling of Ti3SiC2 at RT is slightly higher than that at 500℃, suggesting that Ti3SiC2 is more suitable for use in a high temperature environment.The temperature dependence of cell parameter evolution and the aggregation of He bubbles in Ti3SiC2 are different from those in Ti3AlC2.The formation of defects and He bubbles at the projected depth would induce the degradation of mechanical performance.展开更多
The helium bubble structure and growth modes near dislocations in titanium are studied using the molecular dynamics method. A helium crystal with an HCP structure in titanium is found to have a lattice constant of 1.9...The helium bubble structure and growth modes near dislocations in titanium are studied using the molecular dynamics method. A helium crystal with an HCP structure in titanium is found to have a lattice constant of 1.977 A? at 0 K. On either side of the slip plane, helium bubbles form in the(001) plane, but they are in different growth modes. On the side of the slip plane with full atomic layers, helium bubbles grow toward the slip plane and easily cross the slip plane. In the growth process, the position of the top surface of the helium bubble remains almost unchanged. On the other side of the slip plane,the helium bubble grows initially toward the dislocation core, but it is difficult to cross the slip plane, which results in growth in the opposite direction upon reaching the slip plane.展开更多
基金Project support provided by the National Natural Science Foundation of China(Grant No.12075200)the National Key Research and Development Program of China(Grant No.2022YFB3706004)。
文摘A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in the FeCoNiCrbased HE As with γ' precipitates,these samples are irradiated by 100-keV helium ions with a fluence of 5 × 10^(20) ions/m^(2) at 293 K and 673 K,respectively.And the samples irradiated at room temperature are annealed at different temperatures to examine the diffusion behavior of helium bubbles.Transmission electron microscope(TEM) is employed to characterize the structural morphology of precipitated nanoparticles and the evolution of helium bubbles.Experimental results reveal that nanosized,spherical,dispersed,coherent,and ordered L1_(2)-type Ni_(3)Ti γ' precipitations are introduced into FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs by means of ageing treatments at temperatures between 1073 K and 1123 K.Under the ageing treatment conditions adopted in this work,γ' nanoparticles are precipitated in FeCoNiCr(Ni_(3)Ti)_(0.1) HE As,with average diameters of 15.80 nm,37.09 nm,and 62.50 nm,respectively.The average sizes of helium bubbles observed in samples after 673-K irradiation are 1.46 nm,1.65 nm,and 1.58 nm,respectively.The improvement in the irradiation resistance of FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs is evidenced by the diminution in bubbles size.Furthermore,the FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs containing γ' precipitates of 15.8 nm exhibits the minimum size and density of helium bubbles,which can be ascribed to the considerable helium trapping effects of heterogeneous coherent phase boundaries.Subsequently,annealing experiments conducted after 293-K irradiation indicate that HEAs containing precipitated phases exhibits smaller apparent activation energy(E_(a)) for helium bubbles,resulting in larger helium bubble size.This study provides guidance for improving the irradiation resistance of L1_(2)-strengthened high-entropy alloy.
基金supported by the National Natural Science Foundation of China(Nos.12175231 and 11805131)Anhui Natural Science Foundation of China(No.2108085J05)+1 种基金the National Key Research and Development Plan of China(No.2018YFE0307101)the Collaborative Innovation Program of the Hefei Science Center,CAS(Nos.2021HSC-CIP020 and 2022HSC-CIP009)。
文摘The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to elucidate the susceptibility of different grain boundaries(GBs)to helium-induced embrittlement,the tensile fracture processes of 10 types of GBs with and without helium bubbles in body-centered cubic(bcc)iron at the relevant service temperature of 600 K were investigated via molecular dynamics methods.The results indicate that in the absence of helium bubbles,the GBs studied here can be classified into two distinct categories:brittle GBs and ductile GBs.The atomic scale analysis shows that the plastic deformation of ductile GB at high temperatures originates from complex plastic deformation mechanisms,including the Bain/Burgers path phase transition and deformation twinning,in which the Bain path phase transition is the most dominant plastic deformation mechanism.However,the presence of helium bubbles severely inhibits the plastic deformation channels of the GBs,resulting in a significant decrease in elongation at fractures.For bubble-decorated GBs,the ultimate tensile strength increases with the increase in the misorientation angle.Interestingly,the coherent twin boundary∑3{112}was found to maintain relatively high fracture strength and maximum failure strain under the influence of helium bubbles.
基金supported by the National Natural Science Foundation of China (Grant No. 10775101)National Magnetic Confinement Fusion Program of China (Grant No. 2009GB106004)
文摘In this paper, the pressure state of the helium bubble in titanium is simulated by a molecular dynamics (MD) method. First, the possible helium/vacancy ratio is determined according to therelation between the bubble pressure and helium/vacancy ratio; then the dependences of the helium bubble pressure on the bubble radius at different temperatures are studied. It is shown that the product of the bubble pressure and the radius is approximately a constant, a result justifying the pressure-radius relation predicted by thermodynamics-based theory for gas bubble. Furthermore, a state equation of the helium bubble is established based on the MD calculations. Comparison between the results obtained by the state equation and corresponding experimental data shows that the state equation can describe reasonably the state of helium bubble and thus could be used for Monte Carlo simulations of the evolution of helium bubble in metals.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1967211,U1832112,and 11975191).
文摘The evolution of helium bubbles in purity Mo was investigated by in-situ transmission electron microscopy(TEM)during 30 keV He^(+)irradiation(at 673 K and 1173 K)and post-irradiation annealing(after 30 keV He^(+)irradiation with the fluence of 5.74×10^(16)He^(+)/cm^(2)at 673 K).Both He^(+)irradiation and subsequently annealing induced the initiation,aggregation,and growth of helium bubbles.Temperature had a significant effect on the initiation and evolution of helium bubbles.The higher the irradiation temperature was,the larger the bubble size at the same irradiation fluence would be.At 1173 K irradiation,helium bubbles nucleated and grew preferentially at grain boundaries and showed super large size,which would induce the formation of microcracks.At the same time,the geometry of helium bubbles changed from sphericity to polyhedron.The polyhedral bubbles preferred to grow in the shape bounded by{100}planes.After statistical analysis of the characteristic parameters of helium bubbles,the functions between the average size,number density of helium bubbles,swelling rate and irradiation damage were obtained.Meanwhile,an empirical formula for calculating the size of helium bubbles during the annealing was also provided.
基金supported by the National Natural Science Foundation of China(Nos.12005128,81830052)Construction Project of Shanghai Key Laboratory of Molecular Imaging(No.18DZ2260400)and Shanghai Municipal Education Commission(Class II Plateau Disciplinary Construction Program of Medical Technology of SUMHS,2018–2020).
文摘Helium bubbles,which are typical radiation microstructures observed in metals or alloys,are usually investigated using transmission electron microscopy(TEM).However,the investigation requires human inputs to locate and mark the bubbles in the acquired TEM images,rendering this task laborious and prone to error.In this paper,a machine learning method capable of automatically identifying and analyzing TEM images of helium bubbles is proposed,thereby improving the efficiency and reliability of the investigation.In the proposed technique,helium bubble clusters are first determined via the densitybased spatial clustering of applications with noise algorithm after removing the background and noise pixels.For each helium bubble cluster,the number of helium bubbles is determined based on the cluster size depending on the specific image resolution.Finally,the helium bubble clusters are analyzed using a Gaussian mixture model,yielding the location and size information on the helium bubbles.In contrast to other approaches that require training using numerous annotated images to establish an accurate classifier,the parameters used in the established model are determined using a small number of TEM images.The results of the model formulated according to the proposed approach achieved a higher F1 score validated through some helium bubble images manually marked.Furthermore,the established model can identify bubble-like objects that humans cannot facilely identify.This computationally efficient method achieves object recognition for material structure identification that may be advantageous to scientific work.
基金Supported by the Science Foundation of China Academy of Engineering Physics under Grant No 9090702
文摘The spallation behaviors of Al+0.2wt% ^10B targets and neutron irradiated Al+0.2wt% ^10B targets with 5nm radius helium bubble subjected to direct laser ablation are presented. It is found that the spall strength increases significantly with the tensile strain rate, and the helium bubble or boron inclusions in aluminum reduces the spall strength of materials by 34%. However, slight difference is observed in the spall strength of unirradiated samples compared with the irradiated sample with helium bubbles.
基金Project supported by the ITER-National Magnetic Confinement Fusion Program(Grant Nos.2010GB109000,2011GB108009,and 2014GB123000)the National Natural Science Foundation of China(Grant No.11075119)
文摘Solid helium bubbles were directly observed in the helium ion implanted tungsten(W), by different transmission electron microscopy(TEM) techniques at room temperature. The diameters of these solid helium bubbles range from1 nm to 8 nm in diameter with the mean bubble size about 3 nm. The selected area electron diffraction(SAED) and fast Fourier transform(FFT) images revealed that solid helium bubbles possess body-centered cubic(bcc) structure with a lattice constant of 0.447 nm. High-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)images further confirmed the existence of helium bubble in tungsten. The present findings provide an atomic level view of the microstructure evolution of helium in the materials, and revealed the existence of solid helium bubbles in materials.
基金Project supported by the Science Challenge Project(Grant No.TZ2018002)the National Natural Science Foundation of China(Grant No.11905135)the National MCF Energy R&D Program of China(Grant No.2018YFE0308103).
文摘Understanding the evolution of irradiation-induced defects is of critical importance for the performance estimation of nuclear materials under irradiation.Hereby,we systematically investigate the influence of He on the evolution of Frenkel pairs and collision cascades in tungsten(W)via using the object kinetic Monte Carlo(OKMC)method.Our findings suggest that the presence of He has significant effect on the evolution of irradiation-induced defects.On the one hand,the presence of He can facilitate the recombination of vacancies and self-interstitial atoms(SIAs)in W.This can be attributed to the formation of immobile He-SIA complexes,which increases the annihilation probability of vacancies and SIAs.On the other hand,due to the high stability and low mobility of He-vacancy complexes,the growth of large vacancy clusters in W is kinetically suppressed by He addition.Specially,in comparison with the injection of collision cascades and He in sequential way at 1223 K,the average sizes of surviving vacancy clusters in W via simultaneous way are smaller,which is in good agreement with previous experimental observations.These results advocate that the impurity with low concentration has significant effect on the evolution of irradiation-induced defects in materials,and contributes to our understanding of W performance under irradiation.
基金Project supported by the Special Funds for the Key Research and Development Program of the Ministry of Science and Technology of China(Grant Nos.2017YFB0702201 and 2020YFB1901800)the National Natural Science Foundation of China(Grant Nos.11975135 and 12005017).
文摘Nickel-based alloys have been considered as candidate structural materials used in generation IV nuclear reactors serving at high temperatures.In the present study,alloy 617 was irradiated with 180-keV helium ions to a fluence of 3.6×10^(17) ions/cm^(2) at room temperature.Throughout the cross-section transmission electron microscopy(TEM)image,numerous over-pressurized helium bubbles in spherical shape are observed with the actual concentration profile a little deeper than the SRIM predicted result.Post-implantation annealing was conducted at 700℃for 2 h to investigate the bubble evolution.The long-range migration of helium bubbles occurred during the annealing process,which makes the bubbles of the peak region transform into a faceted shape as well.Then the coarsening mechanism of helium bubbles at different depths is discussed and related to the migration and coalescence(MC)mechanism.With the diffusion of nickel atoms slowed down by the alloy elements,the migration and coalescence of bubbles are suppressed in alloy 617,leading to a better helium irradiation resistance.
基金supported by the National Natural Science Foundation of China(Grant Nos.12022515,11975304,and 91126012)the Youth Innovation Promotion Association,CAS(Grant No.202063)。
文摘We report helium ion irradiation experiments for a new type of dispersion-strengthened NiMo-Y_(2)O_(3)alloy with three different irradiation doses and varying irradiation dose rates at 750℃to evaluate its helium-induced damage behavior.Transmission electron microscopy was used to reveal the evolution of helium bubbles after irradiation.The experimental results show that with increasing ion dose,the number density of helium bubbles increases continuously.However,the mean size of helium bubbles first increases and then decreases,mainly due to the varied ion dose rates.The volume fractions of helium bubbles in the three investigated samples after irradiation are 0.15%,0.32%,and 0.27%,which are lower than that of the Hastelloy N alloy(0.58%)after similar irradiation conditions.This indicates that the NiMo-Y_(2)O_(3)alloy exhibits better helium-induced-swelling resistance than the Hastelloy N alloy,highlighting its potential applicability to MSRs,from the perspective of irradiation performance.
文摘Dislocation and grain boundary have great influence on helium behavior in materials. In this paper, the helium bubble coalescence in titanium with dislocations was simulated using molecular dynamics method. The results show that, when the second helium bubble nucleates near the slip plane, it grows toward the first helium bubble which lies at the dislocation core till they coalesce with each other. However, it is not easy for the coalescence to occur if the two helium bubbles lie in different atomic layers in (001) plane. If the second helium bubble is nucleated on the side of the slip plane with full atomic layers, the second helium bubble growth could lead to the movement of the first helium bubble toward the other sides of the slip plane. The growth rate and direction of the second helium bubble are closely related to the pressure around it.
基金Supported by the National Basic Research Program of China under Grant Nos 2010CB832902 and 91026002the National Natural Science Foundation of China under Grant No U1232121
文摘Modified novel high silicon steel (MNHS, a newly developed reduced-activation martensitic alloy) and commercial alloy Tgl are implanted with 200 keV He2+ ions to a dose of 5 × 1020 ions/m2 at 300, 450 and 560~C. Transmission electron microscopy (TEM) is used to characterize the size and morphology of He bubbles. With the increase of the implantation temperature, TEM observations indicate that bubbles increase in size and the proportion of 'brick shaped' cuboid bubbles increases while the proportion of polyhedral bubbles decreases in both the steel samples. For the samples implanted at the same temperature, the average size of He bubbles in MNHS is smaller than that in T91. This might be due to the abundance of boundaries and precipitates in MNHS, which provide additional sites for the trapping of He atoms, thus reduce the susceptibility of MNHS to He embrittlement.
基金Project supported by the President Foundation of the China Academy of Engineering Physics(Grant No.YZJJLX2018003)the National Natural Science Foundation of China(Grant No.21601168)
文摘The effects of 400 keV helium ion irradiation dose and temperature on the microstructure of the Ti3SiC2 ceramic were systematically investigated by grazing incidence x-ray diffraction, scanning electron microscopy, and transmission electron microscopy.The helium irradiation experiments were performed at both room temperature(RT) and 500℃ with a fluence up to 2.0 × 1017 He+/cm2 that resulted in a maximum damage of 9.6 displacements per atom.Our results demonstrate that He irradiations produce a large number of nanometer defects in Ti3SiC2 lattice and then cause the dissociation of Ti3SiC2 to TiC nano-grains with the increasing He fluence.Irradiation induced cell volume swelling of Ti3SiC2 at RT is slightly higher than that at 500℃, suggesting that Ti3SiC2 is more suitable for use in a high temperature environment.The temperature dependence of cell parameter evolution and the aggregation of He bubbles in Ti3SiC2 are different from those in Ti3AlC2.The formation of defects and He bubbles at the projected depth would induce the degradation of mechanical performance.
基金supported by the National Natural Science Foundation of China(Grant No.11505120)the Project of Innovative Talents of North China University of Water Resources and Electric Power,China(Grant No.70483)
文摘The helium bubble structure and growth modes near dislocations in titanium are studied using the molecular dynamics method. A helium crystal with an HCP structure in titanium is found to have a lattice constant of 1.977 A? at 0 K. On either side of the slip plane, helium bubbles form in the(001) plane, but they are in different growth modes. On the side of the slip plane with full atomic layers, helium bubbles grow toward the slip plane and easily cross the slip plane. In the growth process, the position of the top surface of the helium bubble remains almost unchanged. On the other side of the slip plane,the helium bubble grows initially toward the dislocation core, but it is difficult to cross the slip plane, which results in growth in the opposite direction upon reaching the slip plane.