The conventional measurement of a relative permeability curve (RPC) is usually conducted at room temperature, which is much lower than the reservoir temperature. Previous research work on high temperature relative...The conventional measurement of a relative permeability curve (RPC) is usually conducted at room temperature, which is much lower than the reservoir temperature. Previous research work on high temperature relative permeability mainly take oil-wetted cores as objective. In this paper, laboratory test and measurement are conducted using water-wet cores from the Lunnan Oilfield. Since irreducible water saturation (Swi) is a critical factor that affects and controls the relative permeability curve, special tests are conducted to measure Swi at different temperatures for water-wet cores in the course of the experiment of relative permeability. The experimental results indicate that for the water-wet cores Swi decreased with the increasing temperature from ambient to 105℃,and the relative permeability curve shifted in a low water saturation direction, i.e. moved toward the left, while it moved toward the right for oil wetness reservoirs. Seen from both macroscopic and microcosmic view, the reasons and mechanisms of relative permeability change with temperature are discussed, and factors including core wetness, viscosity force, capillary forces, contact angle, interfacial tension change are considered.展开更多
The irreducible water saturation(Swir) is a significant parameter for relative permeability prediction and initial hydrocarbon reserves estimation.However,the complex pore structures of the tight rocks and multiple fa...The irreducible water saturation(Swir) is a significant parameter for relative permeability prediction and initial hydrocarbon reserves estimation.However,the complex pore structures of the tight rocks and multiple factors of the formation conditions make the parameter difficult to be accurately predicted by the conventional methods in tight gas reservoirs.In this study,a new model was derived to calculate Swir based on the capillary model and the fractal theory.The model incorporated different types of immobile water and considered the stress effect.The dead or stationary water(DSW) was considered in this model,which described the phenomena of water trapped in the dead-end pores due to detour flow and complex pore structures.The water film,stress effect and formation temperature were also considered in the proposed model.The results calculated by the proposed model are in a good agreement with the experimental data.This proves that for tight sandstone gas reservoirs the Swir calculated from the new model is more accurate.The irreducible water saturation calculated from the new model reveals that Swir is controlled by the critical capillary radius,DSW coefficient,effective stress and formation temperature.展开更多
文摘The conventional measurement of a relative permeability curve (RPC) is usually conducted at room temperature, which is much lower than the reservoir temperature. Previous research work on high temperature relative permeability mainly take oil-wetted cores as objective. In this paper, laboratory test and measurement are conducted using water-wet cores from the Lunnan Oilfield. Since irreducible water saturation (Swi) is a critical factor that affects and controls the relative permeability curve, special tests are conducted to measure Swi at different temperatures for water-wet cores in the course of the experiment of relative permeability. The experimental results indicate that for the water-wet cores Swi decreased with the increasing temperature from ambient to 105℃,and the relative permeability curve shifted in a low water saturation direction, i.e. moved toward the left, while it moved toward the right for oil wetness reservoirs. Seen from both macroscopic and microcosmic view, the reasons and mechanisms of relative permeability change with temperature are discussed, and factors including core wetness, viscosity force, capillary forces, contact angle, interfacial tension change are considered.
基金supported by the National Science Foundation (51904324, 51674279, 51804328)the Major National Science and Technology Project (2017ZX05009-001, 2017ZX05072)+3 种基金the Key Research and Development Program (2018GSF116004)the China Postdoctoral Science Foundation (2019T120616)the Funding for Scientific Research of China University of Petroleum East China (YJ20170013)Graduate Innovative Engineering project (YCX2019023)。
文摘The irreducible water saturation(Swir) is a significant parameter for relative permeability prediction and initial hydrocarbon reserves estimation.However,the complex pore structures of the tight rocks and multiple factors of the formation conditions make the parameter difficult to be accurately predicted by the conventional methods in tight gas reservoirs.In this study,a new model was derived to calculate Swir based on the capillary model and the fractal theory.The model incorporated different types of immobile water and considered the stress effect.The dead or stationary water(DSW) was considered in this model,which described the phenomena of water trapped in the dead-end pores due to detour flow and complex pore structures.The water film,stress effect and formation temperature were also considered in the proposed model.The results calculated by the proposed model are in a good agreement with the experimental data.This proves that for tight sandstone gas reservoirs the Swir calculated from the new model is more accurate.The irreducible water saturation calculated from the new model reveals that Swir is controlled by the critical capillary radius,DSW coefficient,effective stress and formation temperature.