Wave radiation stress is the main driving force of wave-induced near-shore currents. It is directly related to the hydrodynamic characteristics of near-shore current whether the calculation of wave radiation stress is...Wave radiation stress is the main driving force of wave-induced near-shore currents. It is directly related to the hydrodynamic characteristics of near-shore current whether the calculation of wave radiation stress is accurate or not. Irregular waves are more capable of reacting wave motion in the ocean compared to regular waves. Therefore,the calculation of the radiation stress under irregular waves will be more able to reflect the wave driving force in the actual near-shore current. Exact solution and approximate solution of the irregular wave radiation stress are derived in this paper and the two kinds of calculation methods are compared. On the basis of this,the experimental results are used to further verify the calculation of wave energy in the approximate calculation method. The results show that the approximate calculation method of irregular wave radiation stress has a good accuracy under the condition of narrow-band spectrum,which can save a lot of computing time,and thus improve the efficiency of calculation. However,the exact calculation method can more accurately reflect the fluctuation of radiation stress at each moment and each location.展开更多
Degradation tests are often used to assess the reliability of products with long failure-time or few test units. Much of the previous work on reliability assessment methods has focused on constant-stress degradation t...Degradation tests are often used to assess the reliability of products with long failure-time or few test units. Much of the previous work on reliability assessment methods has focused on constant-stress degradation test( CSDT) and accelerated degradation test( ADT), mainly under the constant, step or progressive stresses. However,in actual testing environments,some stresses are difficult to control and vary with time irregularly,which are quite different from the three stresses mentioned above. In this paper a new approach was presented for reliability assessment with degradation data under irregular time-varying-stress( ITVS).Firstly,the conventional degradation path modeling method was improved by taking into account the influences of the variable stress on the degradation variable. Then,an example was conducted to show the effectiveness of our improved model.展开更多
The paper studies the propagation of torsional surface waves in an initially stressed anisotropic poro-elastic layer over a semi-infinite heterogeneous half space with linearly varying rigidity and density due to irre...The paper studies the propagation of torsional surface waves in an initially stressed anisotropic poro-elastic layer over a semi-infinite heterogeneous half space with linearly varying rigidity and density due to irregularity at the interface. The irregularity is taken in the half space in the form of a rectangle. It is observed that torsional surface waves propagate in this assumed medium. In the absence of the irregularity, the velocity equation of the torsional surface wave is also obtained. For a layer over a homogeneous half space, the velocity of torsional surface waves coincides with that of the Love waves.展开更多
A helical wire is a critical component of an unbounded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction ...A helical wire is a critical component of an unbounded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction of the flexible riser. The present study establishes an analytical model for the axisymmetric and bending analyses of an unbonded flexible riser. The interlayer contact under axisymmetric loads in this model is modeled by setting radial dummy springs between adjacent layers. The contact pressure is constant during the bending response and applied to determine the slipping friction force per unit helical wire. The model tracks the axial stress around the angular position at each time step to calculate the axial force gradient, then compares the axial force gradient with the slipping friction force to judge the helical wire slipping region, which would be applied to determine the bending stiffness for the next time step. The proposed model is verified against the experimental data in the literature. The bending moment-curvature relationship under irregular response is also qualitatively discussed. The stress at the critical point of the helical wire is investigated based on the model by considering the local flexure. The results indicate that the present model can well simulate the bending stiffness variation during irregular response, which has significant effect on the stress of helical wire.展开更多
The present paper has been framed to study the influence of irregularity, initial stress and porosity on the propagation of torsional surface waves in an initially stressed anisotropic poro-elastic layer over a semi-i...The present paper has been framed to study the influence of irregularity, initial stress and porosity on the propagation of torsional surface waves in an initially stressed anisotropic poro-elastic layer over a semi-infinite heterogeneous half space with linearly varying rigidity and density due to irregularity at the interface. The irregularity has been taken in the half-space in the form of a parabola. It is observed that torsional sur- face waves propagate in this assumed medium. In the absence of irregularity the velocity of torsional surface wave has been obtained. Further, it has been seen that for a layer over a homogeneous half space, the velo- city of torsional surface waves coincides with that of Love waves.展开更多
Irregular shape workface would result in the presence of coal pillar, which leads to high stress concentration and possibly induces coal bumps. In order to study the coal bump mechanism of pillars, static and dynamic ...Irregular shape workface would result in the presence of coal pillar, which leads to high stress concentration and possibly induces coal bumps. In order to study the coal bump mechanism of pillars, static and dynamic stress overlapping(SDSO) method was proposed to explain the impacts of static stress concentration and tremors induced by mining activities. The stress and deformation in surrounding rock of mining face were analyzed based on the field case study at 1303 workface in Zhaolou Coal Mine in China.The results illustrate that the surrounding rock of a workface could be divided into four different zones,i.e., residual stress zone, stress decrease zone, stress increase zone and original stress zone. The stress increase zone is prone to failure under the SDSO impact loading conditions and will provide elastic energy for inducing coal bump. Based on the numerical modelling results, the evolution of static stress in coal pillar as the size of gob increasing was studied, and the impact of dynamic stress was investigated through analyzing the characteristics of tremor activities. The numerical results demonstrate the peak value of vertical stress in coal pillar rises from about 30 MPa with mining distance 10 m to 52.6 MPa with mining distance 120 m, and the location of peak stress transfers to the inner zone of coal pillars as the workface moves forward. For the daily tremor activities, tremors with high energy released indicate high dynamic stress disturbance on the surrounding rock, therefore, the impact of dynamic stressing is more serious during workface extension period because the tremor frequency and average energy after workface extension are higher than those before the workface extension.展开更多
Based on the microstructures of steel, a thermo-elasto-plastic stress model of continuously casting billets is established to study hailal solidifying process in molds. Results show that peritectic phase transformatio...Based on the microstructures of steel, a thermo-elasto-plastic stress model of continuously casting billets is established to study hailal solidifying process in molds. Results show that peritectic phase transformation contributes greatly to the irregular shrinkage ofinitial shell, which makes the billets vulnerable to surface defects.展开更多
基金The National Natural Science Foundation of China under contract No.51879237the General Project of Zhoushan Science and Technology Bureau under contract No.2019C21026+2 种基金the General Scientific Research Project of Zhejiang Education Department under contract No.Y201839488the Fundamental Research Funds for the Provincial Universities under contract No.2019JZ00011the foundation of State Key Laboratory of Ocean Engineering,Shanghai Jiaotong University under contract No.1909.
文摘Wave radiation stress is the main driving force of wave-induced near-shore currents. It is directly related to the hydrodynamic characteristics of near-shore current whether the calculation of wave radiation stress is accurate or not. Irregular waves are more capable of reacting wave motion in the ocean compared to regular waves. Therefore,the calculation of the radiation stress under irregular waves will be more able to reflect the wave driving force in the actual near-shore current. Exact solution and approximate solution of the irregular wave radiation stress are derived in this paper and the two kinds of calculation methods are compared. On the basis of this,the experimental results are used to further verify the calculation of wave energy in the approximate calculation method. The results show that the approximate calculation method of irregular wave radiation stress has a good accuracy under the condition of narrow-band spectrum,which can save a lot of computing time,and thus improve the efficiency of calculation. However,the exact calculation method can more accurately reflect the fluctuation of radiation stress at each moment and each location.
基金National Natural Science Foundations of China(Nos.61273041,71271212)
文摘Degradation tests are often used to assess the reliability of products with long failure-time or few test units. Much of the previous work on reliability assessment methods has focused on constant-stress degradation test( CSDT) and accelerated degradation test( ADT), mainly under the constant, step or progressive stresses. However,in actual testing environments,some stresses are difficult to control and vary with time irregularly,which are quite different from the three stresses mentioned above. In this paper a new approach was presented for reliability assessment with degradation data under irregular time-varying-stress( ITVS).Firstly,the conventional degradation path modeling method was improved by taking into account the influences of the variable stress on the degradation variable. Then,an example was conducted to show the effectiveness of our improved model.
基金for providing financial support through Project No.SR/S4/ES-246/2006 with title "Investigation of torsional surface waves in nonhomogeneous layered earth".
文摘The paper studies the propagation of torsional surface waves in an initially stressed anisotropic poro-elastic layer over a semi-infinite heterogeneous half space with linearly varying rigidity and density due to irregularity at the interface. The irregularity is taken in the half space in the form of a rectangle. It is observed that torsional surface waves propagate in this assumed medium. In the absence of the irregularity, the velocity equation of the torsional surface wave is also obtained. For a layer over a homogeneous half space, the velocity of torsional surface waves coincides with that of the Love waves.
基金Supported by the Natural Science Foundation of Jiangsu Province under Grant No. BK20160557, and the General Program for Colleges and Universities in Jiangsu Province under Grant No. 16KJD570001
文摘A helical wire is a critical component of an unbounded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction of the flexible riser. The present study establishes an analytical model for the axisymmetric and bending analyses of an unbonded flexible riser. The interlayer contact under axisymmetric loads in this model is modeled by setting radial dummy springs between adjacent layers. The contact pressure is constant during the bending response and applied to determine the slipping friction force per unit helical wire. The model tracks the axial stress around the angular position at each time step to calculate the axial force gradient, then compares the axial force gradient with the slipping friction force to judge the helical wire slipping region, which would be applied to determine the bending stiffness for the next time step. The proposed model is verified against the experimental data in the literature. The bending moment-curvature relationship under irregular response is also qualitatively discussed. The stress at the critical point of the helical wire is investigated based on the model by considering the local flexure. The results indicate that the present model can well simulate the bending stiffness variation during irregular response, which has significant effect on the stress of helical wire.
文摘The present paper has been framed to study the influence of irregularity, initial stress and porosity on the propagation of torsional surface waves in an initially stressed anisotropic poro-elastic layer over a semi-infinite heterogeneous half space with linearly varying rigidity and density due to irregularity at the interface. The irregularity has been taken in the half-space in the form of a parabola. It is observed that torsional sur- face waves propagate in this assumed medium. In the absence of irregularity the velocity of torsional surface wave has been obtained. Further, it has been seen that for a layer over a homogeneous half space, the velo- city of torsional surface waves coincides with that of Love waves.
基金financially supported by National Science and Technology Key Project Fund of China (Nos.2016YFC0801401 and 2016YFC0600708)Fundamental Research Funds for the Central Universities of China (No.2009QM01)Yue Qi Distinguished Scholar Project,China University of Mining & Technology,Beijing,China
文摘Irregular shape workface would result in the presence of coal pillar, which leads to high stress concentration and possibly induces coal bumps. In order to study the coal bump mechanism of pillars, static and dynamic stress overlapping(SDSO) method was proposed to explain the impacts of static stress concentration and tremors induced by mining activities. The stress and deformation in surrounding rock of mining face were analyzed based on the field case study at 1303 workface in Zhaolou Coal Mine in China.The results illustrate that the surrounding rock of a workface could be divided into four different zones,i.e., residual stress zone, stress decrease zone, stress increase zone and original stress zone. The stress increase zone is prone to failure under the SDSO impact loading conditions and will provide elastic energy for inducing coal bump. Based on the numerical modelling results, the evolution of static stress in coal pillar as the size of gob increasing was studied, and the impact of dynamic stress was investigated through analyzing the characteristics of tremor activities. The numerical results demonstrate the peak value of vertical stress in coal pillar rises from about 30 MPa with mining distance 10 m to 52.6 MPa with mining distance 120 m, and the location of peak stress transfers to the inner zone of coal pillars as the workface moves forward. For the daily tremor activities, tremors with high energy released indicate high dynamic stress disturbance on the surrounding rock, therefore, the impact of dynamic stressing is more serious during workface extension period because the tremor frequency and average energy after workface extension are higher than those before the workface extension.
文摘Based on the microstructures of steel, a thermo-elasto-plastic stress model of continuously casting billets is established to study hailal solidifying process in molds. Results show that peritectic phase transformation contributes greatly to the irregular shrinkage ofinitial shell, which makes the billets vulnerable to surface defects.
文摘为探讨路基冻胀变形对轨道不平顺及结构受力的影响规律,基于ANSYS有限单元分析方法,以哈大高速铁路冻胀区路基段为研究基础,建立了考虑限位凸台、凝胶树脂及层间粘结接触特征的CRTS Ⅰ型板式无砟轨道-路基冻胀冻融耦合精细化有限元模型.在此基础上,探讨局部冻胀区路基冻胀变形发生位置、不同冻胀波长及幅值对无砟轨道结构的影响,分析了短波冻胀下轨道不平顺、层间离缝特性与静力学性能.结果表明:短波冻胀时无砟轨道结构不平顺范围、变形、离缝、受力等各项指标均随冻胀波长的减小、冻胀峰值的增加而增大;冻胀发生于底座板板中时对轨道结构受力影响最大,冻胀发生于底座板伸缩缝时对轨道结构变形离缝影响最大;相对于轨道板结构,底座板承受拉应力最大,冻胀发生于底座板板中时结构受力影响更大;在轨道结构抗拉强度方面,底座板为限制结构,建议冻胀检修限值的波长为10 m、峰值为5 mm.