Scene text recognition(STR)is the task of recognizing character sequences in natural scenes.Although STR method has been greatly developed,the existing methods still can't recognize any shape of text,such as very ...Scene text recognition(STR)is the task of recognizing character sequences in natural scenes.Although STR method has been greatly developed,the existing methods still can't recognize any shape of text,such as very rich curve text or rotating text in daily life,irregular scene text has complex layout in two-dimensional space,which is used to recognize scene text in the past Recently,some recognizers correct irregular text to regular text image with approximate 1D layout,or convert 2D image feature mapping to one-dimensional feature sequence.Although these methods have achieved good performance,their robustness and accuracy are limited due to the loss of spatial information in the process of two-dimensional to one-dimensional transformation.In this paper,we proposes a framework to directly convert the irregular text of two-dimensional layout into character sequence by using the relationship attention module to capture the correlation of feature mapping Through a large number of experiments on multiple common benchmarks,our method can effectively identify regular and irregular scene text,and is superior to the previous methods in accuracy.展开更多
场景文本在文字识别(Optical Character Recognition,OCR)领域一直是个难题,因此受到学术界的广泛关注。场景文本通常包括透视文本、弯曲文本、定向文本等。目前大多深度学习方法都不能够很好的识别这些不规则的文本,特别是严重变形的...场景文本在文字识别(Optical Character Recognition,OCR)领域一直是个难题,因此受到学术界的广泛关注。场景文本通常包括透视文本、弯曲文本、定向文本等。目前大多深度学习方法都不能够很好的识别这些不规则的文本,特别是严重变形的文本。针对上述问题,本文提出了一种迭代思想的矫正网络用于场景文本的识别,这种网络是一种端到端无需额外字符级注释的可训练网络。该矫正网络通过迭代细化的方式,逐步达到最优矫正。其中参数变换采用薄板样条(Thin Plate Spline,TPS)参数变换,自适应的进行图像变换,进而提高后序识别网络的识别性能。通过在大量公共数据集上进行的实验,证明了本文方法的有效性,特别是在不规则文本上的实验,证明了该方法有着较好的鲁棒性和准确性。展开更多
文摘Scene text recognition(STR)is the task of recognizing character sequences in natural scenes.Although STR method has been greatly developed,the existing methods still can't recognize any shape of text,such as very rich curve text or rotating text in daily life,irregular scene text has complex layout in two-dimensional space,which is used to recognize scene text in the past Recently,some recognizers correct irregular text to regular text image with approximate 1D layout,or convert 2D image feature mapping to one-dimensional feature sequence.Although these methods have achieved good performance,their robustness and accuracy are limited due to the loss of spatial information in the process of two-dimensional to one-dimensional transformation.In this paper,we proposes a framework to directly convert the irregular text of two-dimensional layout into character sequence by using the relationship attention module to capture the correlation of feature mapping Through a large number of experiments on multiple common benchmarks,our method can effectively identify regular and irregular scene text,and is superior to the previous methods in accuracy.
文摘场景文本在文字识别(Optical Character Recognition,OCR)领域一直是个难题,因此受到学术界的广泛关注。场景文本通常包括透视文本、弯曲文本、定向文本等。目前大多深度学习方法都不能够很好的识别这些不规则的文本,特别是严重变形的文本。针对上述问题,本文提出了一种迭代思想的矫正网络用于场景文本的识别,这种网络是一种端到端无需额外字符级注释的可训练网络。该矫正网络通过迭代细化的方式,逐步达到最优矫正。其中参数变换采用薄板样条(Thin Plate Spline,TPS)参数变换,自适应的进行图像变换,进而提高后序识别网络的识别性能。通过在大量公共数据集上进行的实验,证明了本文方法的有效性,特别是在不规则文本上的实验,证明了该方法有着较好的鲁棒性和准确性。