期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Practical evaluation of prelithiation strategies for next-generation lithium-ion batteries 被引量:3
1
作者 Shiming Chen Zhen Wang +6 位作者 Meng Zhang Xiaoze Shi Lu Wang Weifeng An Zikun Li Feng Pan Luyi Yang 《Carbon Energy》 SCIE CSCD 2023年第8期55-77,共23页
With the increasing market demand for high-performance lithium-ion batteries with high-capacity electrode materials,reducing the irreversible capacity loss in the initial cycle and compensating for the active lithium ... With the increasing market demand for high-performance lithium-ion batteries with high-capacity electrode materials,reducing the irreversible capacity loss in the initial cycle and compensating for the active lithium loss during the cycling process are critical challenges.In recent years,various prelithiation strategies have been developed to overcome these issues.Since these approaches are carried out under a wide range of conditions,it is essential to evaluate their suitability for large-scale commercial applications.In this review,these strategies are categorized based on different battery assembling stages that they are implemented in,including active material synthesis,the slurry mixing process,electrode pretreatment,and battery fabrication.Furthermore,their advantages and disadvantages in commercial production are discussed from the perspective of thermodynamics and kinetics.This review aims to provide guidance for the future development of prelithiation strategies toward commercialization,which will potentially promote the practical application of next-generation high-energy-density lithium-ion batteries. 展开更多
关键词 high-energy-density irreversible capacity loss lithium-ion batteries practical application prelithiation
下载PDF
A high-durability aqueous Cu-S battery assisted by pre-copper electrochemistry
2
作者 Jing Zhao Yuruo Qi +4 位作者 Tian Huang Yi Zhang Peipei Zhi Shujuan Bao Maowen Xu 《Nano Research》 SCIE EI CSCD 2023年第7期9553-9560,共8页
Although research interest in aqueous metal-sulfur batteries(AMSs)has surged due to their intrinsic low cost and high capacity,the practical application of AMSs remains a considerable challenge because of the restrict... Although research interest in aqueous metal-sulfur batteries(AMSs)has surged due to their intrinsic low cost and high capacity,the practical application of AMSs remains a considerable challenge because of the restrictive cycling stability.To circumvent this issue,we propose an innovative and simple pre-copper strategy to realize a high-durability aqueous Cu-S battery.The precopper strategy can effectively promote a stable metal dissolution/deposition,compensate for charge carriers,and facilitate reaction kinetics during the subsequent process.As a result,the aqueous Cu-S battery when coupled with S-decorated porous Ti_(3)C_(2)(S-d-Ti_(3)C_(2))exhibits excellent electrochemical performance,delivering a highly reversible capacity of 1805.4 mAh·g^(-1)in the initial cycle at 0.8 A·g^(-1),impressive cycling stability with 90.2%capacity retention over 800 cycles,and ultralow polarization~0.08 V even at a high current density of 3.1 A·g^(-1).The findings obtained in this work could pave the way for the design of highperformance sulfur-based aqueous batteries,which fill the vacancy of the necessary metal anode,delivering merits in both cost and cycle life. 展开更多
关键词 aqueous metal-sulfur batteries pre-copper treatment irreversible capacity loss electrochemical performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部