Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environ...Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environment.However,traditional optimization of crop planting structures often ignores the impact on regional food supply–demand relations and interprovincial food trading.Therefore,using a system analysis concept and taking virtual water output as the connecting point,this study proposes a theoretical CPSO framework based on a multi-aspect and full-scale evaluation index system.To this end,a water footprint(WF)simulation module denoted as soil and water assessment tool–water footprint(SWAT-WF)is constructed to simulate the amount and components of regional crop WFs.A multi-objective spatial CPSO model with the objectives of maximizing the regional economic water productivity(EWP),minimizing the blue water dependency(BWFrate),and minimizing the grey water footprint(GWFgrey)is established to achieve an optimal planting layout.Considering various benefits,a fullscale evaluation index system based on region,province,and country scales is constructed.Through an entropy weight technique for order preference by similarity to an ideal solution(TOPSIS)comprehensive evaluation model,the optimal plan is selected from a variety of CPSO plans.The proposed framework is then verified through a case study of the upper–middle reaches of the Heihe River Basin in Gansu province,China.By combining the theory of virtual water trading with system analysis,the optimal planting structure is found.While sacrificing reasonable regional economic benefits,the optimization of the planting structure significantly improves the regional water resource benefits and ecological benefits at different scales.展开更多
基于多目标在区域尺度实现河套灌区秋浇模式的优化对保证灌区粮食安全、用水安全和生态安全具有重要意义。基于率定验证后的分布式SWAP-WOFOST模型对2000-2017年河套灌区不同秋浇模式和种植条件下的模拟结果,以作物产量、水分生产力(Wat...基于多目标在区域尺度实现河套灌区秋浇模式的优化对保证灌区粮食安全、用水安全和生态安全具有重要意义。基于率定验证后的分布式SWAP-WOFOST模型对2000-2017年河套灌区不同秋浇模式和种植条件下的模拟结果,以作物产量、水分生产力(Water Productivity,WP)、地下水埋深(Groundwater Depth,GWD)、土壤含水量(Soil Water Content,SWC)和土壤含盐量(Soil Salt Content,SSC)为评价指标,通过AHP-CRITIC-熵值法-TOPSIS综合评价法,分别对河套灌区3种主要作物(春小麦、春玉米和向日葵)种植条件下适宜的秋浇模式进行优选和评价,并对3种主要作物在推荐秋浇模式下的种植结构进行初步区划。结果显示:在推荐的秋浇模式下河套灌区3种作物的多年平均产量分别为4945、8332和3496 kg/hm^(2),多年平均WP分别为1.15、1.82和1.04 kg/m^(3),节省秋浇引黄灌溉水量约14.8%~30.7%。基于推荐的秋浇模式区划后春小麦、春玉米和向日葵的种植面积分别占灌区总面积的21.1%、37.8%和41.1%,在此种植结构下可节省约3.04亿m^(3)的秋浇引黄灌溉水量。展开更多
基金financially supported by the National Key Research and Development Program of China(2022YFD1900501)National Natural Science Foundation of China(51861125103)。
文摘Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environment.However,traditional optimization of crop planting structures often ignores the impact on regional food supply–demand relations and interprovincial food trading.Therefore,using a system analysis concept and taking virtual water output as the connecting point,this study proposes a theoretical CPSO framework based on a multi-aspect and full-scale evaluation index system.To this end,a water footprint(WF)simulation module denoted as soil and water assessment tool–water footprint(SWAT-WF)is constructed to simulate the amount and components of regional crop WFs.A multi-objective spatial CPSO model with the objectives of maximizing the regional economic water productivity(EWP),minimizing the blue water dependency(BWFrate),and minimizing the grey water footprint(GWFgrey)is established to achieve an optimal planting layout.Considering various benefits,a fullscale evaluation index system based on region,province,and country scales is constructed.Through an entropy weight technique for order preference by similarity to an ideal solution(TOPSIS)comprehensive evaluation model,the optimal plan is selected from a variety of CPSO plans.The proposed framework is then verified through a case study of the upper–middle reaches of the Heihe River Basin in Gansu province,China.By combining the theory of virtual water trading with system analysis,the optimal planting structure is found.While sacrificing reasonable regional economic benefits,the optimization of the planting structure significantly improves the regional water resource benefits and ecological benefits at different scales.
文摘基于多目标在区域尺度实现河套灌区秋浇模式的优化对保证灌区粮食安全、用水安全和生态安全具有重要意义。基于率定验证后的分布式SWAP-WOFOST模型对2000-2017年河套灌区不同秋浇模式和种植条件下的模拟结果,以作物产量、水分生产力(Water Productivity,WP)、地下水埋深(Groundwater Depth,GWD)、土壤含水量(Soil Water Content,SWC)和土壤含盐量(Soil Salt Content,SSC)为评价指标,通过AHP-CRITIC-熵值法-TOPSIS综合评价法,分别对河套灌区3种主要作物(春小麦、春玉米和向日葵)种植条件下适宜的秋浇模式进行优选和评价,并对3种主要作物在推荐秋浇模式下的种植结构进行初步区划。结果显示:在推荐的秋浇模式下河套灌区3种作物的多年平均产量分别为4945、8332和3496 kg/hm^(2),多年平均WP分别为1.15、1.82和1.04 kg/m^(3),节省秋浇引黄灌溉水量约14.8%~30.7%。基于推荐的秋浇模式区划后春小麦、春玉米和向日葵的种植面积分别占灌区总面积的21.1%、37.8%和41.1%,在此种植结构下可节省约3.04亿m^(3)的秋浇引黄灌溉水量。