期刊文献+
共找到2,325篇文章
< 1 2 117 >
每页显示 20 50 100
Effects of thinning and understory removal on water use efficiency of Pinus massoniana:evidence from photosynthetic capacity and stable carbon isotope analyses
1
作者 Ting Wang Qing Xu +4 位作者 Beibei Zhang Deqiang Gao Ying Zhang Jing Jiang Haijun Zuo 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期42-53,共12页
Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and... Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates. 展开更多
关键词 Stable carbon isotope water use efficiency THINNING Understory removal Photosynthetic capacity Needle water potential
下载PDF
Regulation effects of water and nitrogen on yield,water,and nitrogen use efficiency of wolfberry
2
作者 GAO Yalin QI Guangping +7 位作者 MA Yanlin YIN Minhua WANG Jinghai WANG Chen TIAN Rongrong XIAO Feng LU Qiang WANG Jianjun 《Journal of Arid Land》 SCIE CSCD 2024年第1期29-45,共17页
Wolfberry(Lycium barbarum L.)is important for health care and ecological protection.However,it faces problems of low productivity and resource utilization during planting.Exploring reasonable models for water and nitr... Wolfberry(Lycium barbarum L.)is important for health care and ecological protection.However,it faces problems of low productivity and resource utilization during planting.Exploring reasonable models for water and nitrogen management is important for solving these problems.Based on field trials in 2021 and 2022,this study analyzed the effects of controlling soil water and nitrogen application levels on wolfberry height,stem diameter,crown width,yield,and water(WUE)and nitrogen use efficiency(NUE).The upper and lower limits of soil water were controlled by the percentage of soil water content to field water capacity(θ_(f)),and four water levels,i.e.,adequate irrigation(W0,75%-85%θ_(f)),mild water deficit(W1,65%-75%θ_(f)),moderate water deficit(W2,55%-65%θ_(f)),and severe water deficit(W3,45%-55%θ_(f))were used,and three nitrogen application levels,i.e.,no nitrogen(N0,0 kg/hm^(2)),low nitrogen(N1,150 kg/hm^(2)),medium nitrogen(N2,300 kg/hm^(2)),and high nitrogen(N3,450 kg/hm^(2))were implied.The results showed that irrigation and nitrogen application significantly affected plant height,stem diameter,and crown width of wolfberry at different growth stages(P<0.01),and their maximum values were observed in W1N2,W0N2,and W1N3 treatments.Dry weight per plant and yield of wolfberry first increased and then decreased with increasing nitrogen application under the same water treatment.Dry weight per hundred grains and dry weight percentage increased with increasing nitrogen application under W0 treatment.However,under other water treatments,the values first increased and then decreased with increasing nitrogen application.Yield and its component of wolfberry first increased and then decreased as water deficit increased under the same nitrogen treatment.Irrigation water use efficiency(IWUE,8.46 kg/(hm^(2)·mm)),WUE(6.83 kg/(hm^(2)·mm)),partial factor productivity of nitrogen(PFPN,2.56 kg/kg),and NUE(14.29 kg/kg)reached their highest values in W2N2,W1N2,W1N2,and W1N1 treatments.Results of principal component analysis(PCA)showed that yield,WUE,and NUE were better in W1N2 treatment,making it a suitable water and nitrogen management mode for the irrigation area of the Yellow River in the Gansu Province,China and similar planting areas. 展开更多
关键词 water deficit growth characteristics YIELD water and nitrogen use efficiency principal component analysis
下载PDF
Effects of Different Irrigation Amounts on Water Consumption and Water Use Efficiency of Greenhouse Cucumber 被引量:6
3
作者 郭生虎 孔德杰 +2 位作者 张源沛 郑国宝 朱金霞 《Agricultural Science & Technology》 CAS 2010年第9期217-220,共4页
[Objective] This study was to investigate the effects of different irrigation amount on water consumption and water use efficiency of greenhouse cucumber.[Method]Under the condition of drip irrigation with different w... [Objective] This study was to investigate the effects of different irrigation amount on water consumption and water use efficiency of greenhouse cucumber.[Method]Under the condition of drip irrigation with different water amounts in sunlight greenhouse of the arid areas in Ningxia,the soil water was measured and the water consumption of crop was calculated.[Result]When irrigation amount was 563 mm,the water consumption as a whole gradually increased with the delay of growth period,reached peak during the thriving stage of fruit setting,and then gradually declined;in each treatment,the daily water consumption increased with the increasing of irrigation amount during each growth period.However,the consumption of soil moisture reduced with the significant increase of irrigation.563 mm of irrigation amount could meet the water requirements of cucumber and began to add water to soil,and water utilization efficiency could reach 33.4 kg/m3.[Conclusion]The research had provided theoretical basis for water management in the production process of greenhouse cucumber. 展开更多
关键词 GREENHOuse CUCUMBER irrigation amount water consumption water utilization efficiency
下载PDF
Yields,growth and water use under chemical topping in relations to row configuration and plant density in drip-irrigated cotton 被引量:1
4
作者 Wang Xuejiao Hu Yanping +10 位作者 Ji Chunrong Chen Yongfan Sun Shuai Zhang Zeshan Zhang Yutong Wang Sen Yang Mingfeng Ji Fen Guo Yanyun Li Jie Zhang Lizhen 《Journal of Cotton Research》 CAS 2024年第2期123-136,共14页
Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting m... Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient. 展开更多
关键词 Yield components Fiber quality TRANSPIRATION water use efficiency Heat ratio method(HRM)
下载PDF
Effects of Different Irrigation Amounts on Water Consumption and Water Use Efficiency of Dripirrigated Celery
5
作者 杨军 廉晓娟 +2 位作者 王艳 张余良 王正祥 《Agricultural Science & Technology》 CAS 2016年第9期2090-2095,共6页
This study aimed to investigate the effects of different irrigation amounts on water consumption and water use efficiency of celery under the condition of drip irrigation, so as to provide a scientific basis for high-... This study aimed to investigate the effects of different irrigation amounts on water consumption and water use efficiency of celery under the condition of drip irrigation, so as to provide a scientific basis for high-yielding, high-quality and highefficiency cultivation and water-saving irrigation of greenhouse celery. Total five irrigation amounts were designed, 117.5 (T1), 160.0 (T2), 202.5 (T3), 245.0 (T4) and 287.5 (CK) mm/hm2, and the effects of different irrigation amounts on yield, water consumption and water use efficiency of celery were studied by plot experiment. The results showed that at the soil depth of 0-40 cm, the soil water storages of different treatments ranked as T3's〉T4's〉CK's〉T2's〉T1's, and the celery water consumptions ranked as CK's〉T4's〉T3's〉T2's〉T1's. At the same time, the soil water storage in different treatment group declined with the growth of celery, and finally increased at the harvest period. Among different irrigation amounts, the water use effi- ciency and irrigation water use efficiency all ranked as T1's〉T2's〉T3's〉T4's〉CK's. The water consumption of celery was positively related to irrigation amount (P〈 0.01), and was negatively related to water use efficiency (P〈0.01) and irrigation water use efficiency (P〈0.05). When the irrigation amount was below 253 mm/hm2, the celery yield was positively related to irrigation amount (P〈0.01). There was also a positive correlation between celery output and irrigation amount. Compared with those of CK, the benefit of the T4 treatment group was equal, and the water consumption was reduced by 14.78%. In high-efficiency solar greenhouse, the irrigation amount of drip-irrigated celery is recommended as 245 mm/hm2. 展开更多
关键词 Drip irrigation CELERY irrigation amount water consumption water use efficiency
下载PDF
Changes in Water Use Efficiency Caused by Climate Change,CO_(2) Fertilization,and Land Use Changes on the Tibetan Plateau 被引量:2
6
作者 Binghao JIA Xin LUO +1 位作者 Longhuan WANG Xin LAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第1期144-154,共11页
Terrestrial ecosystem water use efficiency(WUE)is an important indicator for coupling plant photosynthesis and transpiration,and is also a key factor linking the carbon and water cycles between the land and atmosphere... Terrestrial ecosystem water use efficiency(WUE)is an important indicator for coupling plant photosynthesis and transpiration,and is also a key factor linking the carbon and water cycles between the land and atmosphere.However,under the combination of climate change and human intervention,the change in WUE is still unclear,especially on the Tibetan Plateau(TP).Therefore,satellite remote sensing data and process-based terrestrial biosphere models(TBMs)are used in this study to investigate the spatiotemporal variations of WUE over the TP from 2001 to 2010.Then,the effects of land use and land cover change(LULCC)and CO_(2) fertilization on WUE from 1981-2010 are assessed using TBMs.Results show that climate change is the leading contributor to the change in WUE on the TP,and temperature is the most important factor.LULCC makes a negative contribution to WUE(-20.63%),which is greater than the positive contribution of CO_(2) fertilization(11.65%).In addition,CO_(2) fertilization can effectively improve ecosystem resilience on the TP.On the northwest plateau,the effects of LULCC and CO_(2) fertilization on WUE are more pronounced during the driest years than the annual average.These findings can help researchers understand the response of WUE to climate change and human activity and the coupling of the carbon and water cycles over the TP. 展开更多
关键词 water use efficiency gross primary productivity EVAPOTRANSPIRATION Tibetan Plateau carbon and water cycle
下载PDF
Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels
7
作者 Teame G KEBEDE Emiru BIRHANE +1 位作者 Kiros-Meles AYIMUT Yemane G EGZIABHER 《Journal of Arid Land》 SCIE CSCD 2023年第8期975-988,共14页
Opuntia ficus-indica(L.)Miller is a CAM(crassulacean acid metabolism)plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO_(2) at nighttime,store a significant amount of ... Opuntia ficus-indica(L.)Miller is a CAM(crassulacean acid metabolism)plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO_(2) at nighttime,store a significant amount of water in cladodes,and reduce root growth.Plants that grow in moisture-stress conditions with thick and less fine root hairs have a strong symbiosis with arbuscular mycorrhizal fungi(AMF)to adapt to drought stress.Water stress can limit plant growth and biomass production,which can be rehabilitated by AMF association through improved physiological performance.The objective of this study was to investigate the effects of AMF inoculations and variable soil water levels on the biomass,photosynthesis,and water use efficiency of the spiny and spineless O.ficus-indica.The experiment was conducted in a greenhouse with a full factorial experiment using O.ficus-indica type(spiny or spineless),AMF(presence or absence),and four soil water available(SWA)treatments through seven replications.Water treatments applied were 0%–25%SWA(T1),25%–50%SWA(T2),50%–75%SWA(T3),and 75%–100%SWA(T4).Drought stress reduced biomass and cladode growth,while AMF colonization significantly increased the biomass production with significant changes in the physiological performance of O.ficus-indica.AMF presence significantly increased biomass of both O.ficus-indica plant types through improved growth,photosynthetic water use efficiency,and photosynthesis.The presence of spines on the surface of cladodes significantly reduced the rate of photosynthesis and photosynthetic water use efficiency.Net photosynthesis,photosynthetic water use efficiency,transpiration,and stomatal conductance rate significantly decreased with increased drought stress.Under drought stress,some planted mother cladodes with the absence of AMF have not established daughter cladodes,whereas AMF-inoculated mother cladodes fully established daughter cladodes.AMF root colonization significantly increased with the decrease of SWA.AMF caused an increase in biomass production,increased tolerance to drought stress,and improved photosynthesis and water use efficiency performance of O.ficus-indica.The potential of O.ficus-indica to adapt to drought stress is controlled by the morpho-physiological performance related to AMF association. 展开更多
关键词 BIOMASS cactus pear cladode growth PHOTOSYNTHESIS water stress water use efficiency
下载PDF
Controlled drainage in the Nile River delta of Egypt:a promising approach for decreasing drainage off-site effects and enhancing yield and water use efficiency of wheat
8
作者 Mohamed K EL-GHANNAM Fatma WASSAR +4 位作者 Sabah MORSY Mohamed HAFEZ Chiter M PARIHAR Kent O BURKEY Ahmed M ABDALLAH 《Journal of Arid Land》 SCIE CSCD 2023年第4期460-476,共17页
North Africa is one of the most regions impacted by water shortage.The implementation of controlled drainage(CD)in the northern Nile River delta of Egypt is one strategy to decrease irrigation,thus alleviating the neg... North Africa is one of the most regions impacted by water shortage.The implementation of controlled drainage(CD)in the northern Nile River delta of Egypt is one strategy to decrease irrigation,thus alleviating the negative impact of water shortage.This study investigated the impacts of CD at different levels on drainage outflow,water table level,nitrate loss,grain yield,and water use efficiency(WUE)of various wheat cultivars.Two levels of CD,i.e.,0.4 m below the soil surface(CD-0.4)and 0.8 m below the soil surface(CD-0.8),were compared with subsurface free drainage(SFD)at 1.2 m below the soil surface(SFD-1.2).Under each drainage treatment,four wheat cultivars were grown for two growing seasons(November 2018–April 2019 and November 2019–April 2020).Compared with SFD-1.2,CD-0.4 and CD-0.8 decreased irrigation water by 42.0%and 19.9%,drainage outflow by 40.3%and 27.3%,and nitrate loss by 35.3%and 20.8%,respectively.Under CD treatments,plants absorbed a significant portion of their evapotranspiration from shallow groundwater(22.0%and 8.0%for CD-0.4 and CD-0.8,respectively).All wheat cultivars positively responded to CD treatments,and the highest grain yield and straw yield were obtained under CD-0.4 treatment.Using the initial soil salinity as a reference,the soil salinity under CD-0.4 treatment increased two-fold by the end of the second growing season without negative impacts on wheat yield.Modifying the drainage system by raising the outlet elevation and considering shallow groundwater contribution to crop evapotranspiration promoted water-saving and WUE.Different responses could be obtained based on the different plant tolerance to salinity and water stress,crop characteristics,and growth stage.Site-specific soil salinity management practices will be required to avoid soil salinization due to the adoption of long-term shallow groundwater in Egypt and other similar agroecosystems. 展开更多
关键词 drainage ratio nitrate loss water use efficiency YIELD soil salinity Nile River delta
下载PDF
Effects of Different Irrigation Amounts on Physiological Indexes and Water Use Efficiency of Rice at the Jointing-booting Stage 被引量:1
9
作者 李轲 景元书 +1 位作者 谭孟祥 薛杨 《Agricultural Science & Technology》 CAS 2017年第11期2014-2018,2025,共6页
[Objective] This study was conducted to investigate the effects of different irrigation amounts on rice leaf physiology and water use efficiency. [Method] The irrigation test with three different treatments was carrie... [Objective] This study was conducted to investigate the effects of different irrigation amounts on rice leaf physiology and water use efficiency. [Method] The irrigation test with three different treatments was carried out in the Agrometeo- rological Experimental Station of Nanjing University of Information Science & Technology. [Reset] Under flood irrigation, the rice leaf temperature was lower than wet irrigation by 0.4-0.7 ℃; when the strength of photosynthetically active radiation was in the range of 800-1 800 gmol/(m^2·s), the average stomatal conductance of rice leaves under flood irrigation was higher than that of the wet irrigation treatment by 0.123-0.183 mol H2O/(m^2·s), and the leaf water use efficiency was higher than that of the wet irrigation treatment by 0.24 g/kg; after 10:00 every day, the water use efficiency under flood irrigation was always higher than that of the wet irrigation treatment; and compared with the wet irrigation treatment, the rice of the flood irrigation treatments had higher leaf water use efficiency, and final yields were also remarkably improved by 5.89%-13.97%. [Conclusion] This study will provide a practical reference basis for field management. 展开更多
关键词 Stomatal conductance RICE water use efficiency YIELD
下载PDF
Response of yield,quality,water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China 被引量:25
10
作者 DU Ya-dan CAO Hong-xia +2 位作者 LIU Shi-quan GU Xiao-bo CAO Yu-xin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1153-1161,共9页
The objective of this study was to investigate the effects of applying different amounts of water and nitrogen on yield, fruit quality, water use efficiency (WUE), irrigation water use efficiency (IWUE) and nitrog... The objective of this study was to investigate the effects of applying different amounts of water and nitrogen on yield, fruit quality, water use efficiency (WUE), irrigation water use efficiency (IWUE) and nitrogen use efficiency (NUE) of drip-irrigated greenhouse tomatoes in northwestern China. The plants were irrigated every seven days at various proportions of 20-cm pan evaporation (Ep). The experiment consisted of three irrigation levels (11, 50% Ep; 12, 75% Ep; and 13, 100% Ep) and three N application levels (N1, 150 kg N ha^-1; N2, 250 kg N ha^-1;and N3, 350 kg N ha^-1). Tomato yield increased with the amount of applied irrigation water in 12 and then decreased in 13. WUE and IWUE were the highest in Ii. WUE was 16.5% lower in 12 than that in I1, but yield was 26.6% higher in 12 than that in I1. Tomato yield, WUE, and IWUE were significantly higher in N2 than that in N1 and N3. NUIE decreased with increasing N levels but NUE increased with increase the amount of water applied. Increasing both water and N levels increased the foliar net photosynthetic rate. I1 and 12 treatments significantly increased the contents of total soluble solids (TSS), vitamin C (VC), lycopene, soluble sugars (SS), and organic acids (OA) and the sugar:acid ratio in the fruit and decreased the nitrate content. TSS, VC, lycopene, and SS contents were the highest in N2. The harvest index (HI) was the highest in 12N2. 12N2 provided the optimal combination of tomato yield, fruit quality, and WUE. The irrigation and fertilisation regime of 75% Ep and 250 kg N ha^-1 was the best strategy of water and N management for the production of drip-irrigated greenhouse tomato. 展开更多
关键词 TOMATO drip irrigation YIELD fruit quality water use efficiency (WUE)
下载PDF
Effects of arrangement of surge-root irrigation emitters on growth,yield and water use efficiency of apple trees 被引量:5
11
作者 LI Zhongjie FEI Liangjun +4 位作者 HAO Kun LIU Teng CHEN Nanshu ZHANG Quanju HUANG Deliang 《排灌机械工程学报》 EI CSCD 北大核心 2020年第7期713-719,共7页
Six-year old apple trees were selected for field experiment.The objective of this study was to obtain the reasonable arrangement of surge-root irrigation emitters in apple orchards.There were three factors:the buried ... Six-year old apple trees were selected for field experiment.The objective of this study was to obtain the reasonable arrangement of surge-root irrigation emitters in apple orchards.There were three factors:the buried depth H(25,40,55 cm),the horizontal distance L(30,40,60 cm)between the emitters and the trunk of the experimental tree,and the number of the irrigation emitters N(1,2,4).The effect of the arrangement of surge-root irrigation emitters on the growth,yield and irrigation water use efficiency(IWUE)of apple trees were studied in Northern Shaanxi where the irrigation quota takes 60%-75%of the field water capacity.The results showed that the arrangement of emitters for surge-root irrigation had a significant effect on apple tree yield and IWUE,especially,the yield and IWUE reached 28388.17 kg/hm2 and 16.83 kg/m3 in treatment T3,respectively.At the same L and N levels(T1,T2,and T3),the yield and IWUE in treatment T3 were the highest,and the yields in treatments T1 and T2 were decreased by 26.22%and 31.48%,while IWUE is reduced by14.02%and 18.12%compared with T3,respectively.At the same H and N levels(T3,T4,and T5),the yield and IWUE of apple trees were decreased with increasing L level.Especially,when L was 30 cm(T3),the yield and IWUE were the highest.The same L and H levels(T3,T6,and T7)could promote the growth of apple trees when N was 2(T3).Compared with treatment T3,it was found that the increment of new shoots was decreased by 8.07%-18.71%,and the fruit diameter was decreased by 5.41%-9.11%.Therefore,two emitters should be arranged symmetrically on both sides of an apple tree,each was buried at a 40 cm depth and 30 cm away from the trunk of the tree to effectively improve the yield and IWUE of the apple tree in mountainous areas in Northern Shaanxi. 展开更多
关键词 irrigation emitters surge-root irrigation apple trees arrangement modes YIELD irrigation water use efficiency
下载PDF
Effects of water salinity and N application rate on water- and N-use efficiency of cotton under drip irrigation 被引量:14
12
作者 Wei MIN ZhenAn HOU +3 位作者 LiJuan MA Wen ZHANG SiBo RU Jun YE 《Journal of Arid Land》 SCIE CSCD 2014年第4期454-467,共14页
In arid and semi-arid regions, freshwater scarcity and high water salinity are serious and chronic problems for crop production and sustainable agriculture development. We conducted a field experiment to evaluate the ... In arid and semi-arid regions, freshwater scarcity and high water salinity are serious and chronic problems for crop production and sustainable agriculture development. We conducted a field experiment to evaluate the effect of irrigation water salinity and nitrogen(N) application rate on soil salinity and cotton yield under drip irrigation during the 2011 and 2012 growing seasons. The experimental design was a 3×4 factorial with three irrigation water salinity levels(0.35, 4.61 and 8.04 dS/m) and four N application rates(0, 240, 360 and 480 kg N/hm2). Results showed that soil water content increased as the salinity of the irrigation water increased, but decreased as the N application rate increased. Soil salinity increased as the salinity of the irrigation water increased. Specifically, soil salinity measured in 1:5 soil:water extracts was 218% higher in the 4.61 dS/m treatment and 347% higher in the 8.04 dS/m treatment than in the 0.35 dS/m treatment. Nitrogen fertilizer application had relatively little effect on soil salinity, increasing salinity by only 3%–9% compared with the unfertilized treatment. Cotton biomass, cotton yield and evapotranspiration(ET) decreased significantly in both years as the salinity of irrigation water increased, and increased as the N application rate increased regardless of irrigation water salinity; however, the positive effects of N application were reduced when the salinity of the irrigation water was 8.04 dS/m. Water use efficiency(WUE) was significantly higher by 11% in the 0.35 dS/m treatment than in the 8.04 dS/m treatment. There was no significant difference in WUE between the 0.35 dS/m treatment and the 4.61 dS/m treatment. The WUE was also significantly affected by the N application rate. The WUE was highest in the 480 kg N/hm2 treatment, being 31% higher than that in the 0 kg N/hm2 treatment and 12% higher than that in the 240 kg N/hm2 treatment. There was no significant difference between the 360 and 480 kg N/hm2 treatments. The N use efficiency(NUE) was significantly lower in the 8.04 dS/m treatment than in either the 4.61 dS/m or the 0.35 dS/m treatment. There was no significant difference in NUE between the latter two treatments. These results suggest that irrigation water with salinity 〈4.61 dS/m does not have an obvious negative effect on cotton production, WUE or NUE under the experimental conditions. Application of N fertilizer(0–360 kg N/hm2) could alleviate salt damage, promote cotton growth, and increase both cotton yield and water use efficiency. 展开更多
关键词 saline water NITROGEN soil salinity COTTON water use efficiency nitrogen use efficiency
下载PDF
Alternate Furrow Irrigation: A Practical Way to Improve Grape Quality and Water Use Efficiency in Arid Northwest China 被引量:6
13
作者 DU Tai-sheng KANG Shao-zhong +1 位作者 YAN Bo-yuan ZHANG Jian-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第3期509-519,共11页
Field experiments were conducted for two years to investigate the benefits of alternate furrow irrigation on fruit yield, quality and water use efficiency of grape (Vitis vinifera L. cv. Rizamat) in the arid region ... Field experiments were conducted for two years to investigate the benefits of alternate furrow irrigation on fruit yield, quality and water use efficiency of grape (Vitis vinifera L. cv. Rizamat) in the arid region of Northwest China. Two irrigation treatments were included, i.e., conventional furrow irrigation (CFI, two root-zones were simultaneously irrigated during the consecutive irrigation) and alternate partial root-zone furrow irrigation (AFI, two root-zones were alternatively irrigated during the consecutive irrigation). Results indicate that AFI maintained similar photosynthetic rate (Pn) but with a reduced transpiration rate when compared to CFI. As a consequence, AFI improved water use efficiency based on evapotranspiration (WUEEr, fruit yield over water consumed) and irrigation (WUE~, fruit yield over water irrigated) by 30.0 and 34.5%, respectively in 2005, and by 12.7 and 17.7%, respectively in 2006. AFI also increased the edible percentage of berry by 2.91-4.79% significantly in both years. Vitamin C (Vc) content content of berry was increased by 25.6-37.5%, and tritrated acidity (TA) was reduced by 9.5-18.1% in AFI. This resulted in an increased total soluble solid content (TSS) to TA ratio (TSS/TA) by 11.5-16.7% when compared to CFI in both years. Our results indicate that alternate furrow irrigation is a practical way to improve grape fruit quality and water use efficiency for irrigated crops in arid areas. 展开更多
关键词 alternate furrow irrigation partial root-zone irrigation fruit yield water use efficiency fruit quality grape(Fitis vinifera L.
下载PDF
Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation 被引量:25
14
作者 ZHOU Qun JU Cheng-xin +4 位作者 WANG Zhi-qin ZHANG Hao LIU Li-jun YANG Jian-chang ZHANG Jian-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1028-1043,共16页
This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than... This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than check rice. Two super rice cultivars and two elite check rice cultivars were grown in pots with three soil moisture levels, well watered (WW), moderate water deficit (MWD) and severe water deficit (SWD). Two cultivars, each for super rice and check rice, were grown in field with three irrigation regimes, alternate wetting and moderate drying (AWMD), alternate wetting and severe drying (AWSD) and conventional irrigation (CI). Compared with that under WW, grain yield was significantly decreased under MWD and SWD treatments, with less reduction for super rice than for check rice. Super rice had higher percentage of productive tillers, deeper root distribution, higher root oxidation activity, and greater aboveground biomass production at mid and late growth stages than check rice, especially under WMD and WSD. Compared with CI,AWMD increased, whereasAWSD decreased grain yield, with more increase or less decrease for super rice than for check rice. Both MWD and SWD treatments and eitherAWMD orAWSD regime significantly increased WUE compared with WW treatment or CI regime, with more increase for super rice than for check rice. The results suggest that super rice has a stronger ability to cope with soil water deficit and holds greater promising to increase both grain yield and WUE by adoption of moderate AWD irrigation. 展开更多
关键词 super rice soil water deficit alternate wetting and drying (AWD) grain yield water use efficiency
下载PDF
Irrigation Water Use Efficiency of Farmers and Its Determinants: Evidence from a Survey in Northwestern China 被引量:17
15
作者 WANG Xue-yuan College of Economics, Zhejiang Gongshang University, Hangzhou 310018, P.R.China 《Agricultural Sciences in China》 CSCD 2010年第9期1326-1337,共12页
Irrigation water shortage is becoming an increasingly serious problem in agricultural production. In this case, it is very important for policy makers to take measures to improve irrigation water use efficiency, espec... Irrigation water shortage is becoming an increasingly serious problem in agricultural production. In this case, it is very important for policy makers to take measures to improve irrigation water use efficiency, especially in the water-scarce areas. In this paper, the data envelopment analysis (DEA) techniques, based on the concept of input-specific technical efficiency were used to develop farm-level technical efficiency measures and sub-vector efficiencies for irrigation water use. The Tobit regression technique was then adopted to identify the factors that influence irrigation water efficiency differentials under the shortage of water resources. Based on a sample data of 432 wheat farmers in northwestern China, our experimental results of the DEA analysis showed the average technical efficiency of 0.6151. It suggested that wheat farmers could increase their production by as much as 38.49% by using inputs more efficiently. Further, the mean irrigation water efficiency of 0.3065, suggested that wheat farmers could produce the same quantity of wheat using the same quantity of inputs but with 69.35% less water. The results of the Tobit regression analysis showed that the farmer's age, income, education level, and the farm size tended to affect the degree of irrigation water efficiency positively, and the channel conditions and different irrigation methods made a significant impact on irrigation water use efficiency. Furthermore, the arrangements of exclusive water property rights and competitive water price mechanism have effectively encouraged the water saving behavior of farmers. These results are valuable for policy makers since it could help to guide policies towards high irrigation water use efficiency. 展开更多
关键词 irrigation water efficiency determinants data envelopment analysis Tobit regression
下载PDF
Canopy morphological changes and water use efficiency in winter wheat under different irrigation treatments 被引量:5
16
作者 ZHAO Hong-xiang ZHANG Ping +3 位作者 WANG Yuan-yuan NING Tang-yuan XU Cai-long WANG Pu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第4期1105-1116,共12页
Water is a key limiting factor in agriculture. Water resource shortages have become a serious threat to global food security. The development of water-saving irrigation techniques based on crop requirements is an impo... Water is a key limiting factor in agriculture. Water resource shortages have become a serious threat to global food security. The development of water-saving irrigation techniques based on crop requirements is an important strategy to resolve water scarcity in arid and semi-arid regions. In this study, field experiments with winter wheat were performed at Wuqiao Experiment Station, China Agricultural University in two growing seasons in 2013-2015 to help develop such techniques. Three irrigation treatments were tested: no-irrigation(i.e., no water applied after sowing), limited-irrigation(i.e., 60 mm of water applied at jointing), and sufficient-irrigation(i.e., a total of 180 mm of water applied with 60 mm at turning green, jointing and anthesis stages, respectively). Leaf area index(LAI), light transmittance(LT), leaf angle(LA), transpiration rate(Tr), specific leaf weight, water use efficiency(WUE), and grain yield of winter wheat were measured. The highest WUE of wheat in the irrigated treatments was found under limited-irrigation and grain yield was only reduced by a small amount in this treatment compared to the sufficient irrigation treatment. The LAI and LA of wheat plants was lower under limited irrigation than sufficient irrigation, but canopy LT was greater. Moreover, the specific leaf weight of winter wheat was significantly lower under sufficient than limited irrigation conditions, while the leaf Tr was significantly higher. Correlation analysis showed that the increased LAI was associated with an increase in the leaf Tr, but the specific leaf weight had the opposite relationship with transpiration. Optimum WUE occurred over a reasonable range in leaf Tr. In conclusion, reduced irrigation can optimize wheat canopies and regulate water consumption, with only small reductions in final yield, ultimately leading to higher wheat WUE and water saving in arid and semi-arid regions. 展开更多
关键词 WINTER wheat limited-irrigation CANOPY characteristics TRANSPIRATION rate water use efficiency
下载PDF
Exogenous application of glycine betaine improved water use efficiency in winter wheat(Triticum aestivum L.) via modulating photosynthetic efficiency and antioxidative capacity under conventional and limited irrigation conditions 被引量:3
17
作者 Nazir Ahmed Yushi Zhang +3 位作者 Ke Li Yuyi Zhou Mingcai Zhang Zhaohu Li 《The Crop Journal》 SCIE CAS CSCD 2019年第5期635-650,共16页
Improving water use efficiency(WUE)is an important subject in agricultural irrigation for alleviating the scarcity of water resources in semiarid regions of the North China Plain.Moreover,glycine betaine(GB)is one of ... Improving water use efficiency(WUE)is an important subject in agricultural irrigation for alleviating the scarcity of water resources in semiarid regions of the North China Plain.Moreover,glycine betaine(GB)is one of the most effective compatible solutes synthesized naturally in plants for enhancing stress tolerance under abiotic stress,but little information is available on the involvement of GB in regulating crop WUE under field conditions.This study was conducted to explore the role of exogenously applied GB in improving WUE and plant physiological and biochemical responses inwinterwheat subjected to conventional or limited irrigation during the 2015–2016 and 2016–2017 growing seasons.Exogenous application of GB significantly enhanced antioxidant enzyme activities and reduced the accumulation ofmalondialdehyde and hydrogen peroxide under limited irrigation conditions.Furthermore,GB-treated plantsmaintained higher leaf relative water content andmembrane stability,which led to higher chlorophyll content and gas exchange attributes for better intrinsic and instantaneouswater use efficiencies compared to control plants under limited irrigation conditions.GB-treated plants had higher indole-acetic acid and zeatin riboside levels but lower ABA levels compared to control plants under conventional and limited irrigation conditions.Additionally,GB enhanced the grain filling rate and duration,grain number per spike,and final grainweight,which resulted in higher grain yield compared to the control.Interestingly,GB significantly improved the integrative and photosynthetic WUE under conventional and limited irrigation conditions,although GB treatment did not markedly affect total water consumption.These results suggest the involvement of GB in improving WUEs in winter wheat by modulating hormonal balance,membrane stability,photosynthetic performance and antioxidant systems to maintain higher grain yield under conventional and limited irrigation conditions. 展开更多
关键词 Winter wheat GLYCINE BETAINE water use efficiency Limited irrigation PHOTOSYNTHETIC performance Antioxidant systems
下载PDF
Using irrigation intervals to optimize water-use efficiency and maize yield in Xinjiang,northwest China 被引量:7
18
作者 Guoqiang Zhang Dongping Shen +10 位作者 Bo Ming Ruizhi Xie Xiuliang Jin Chaowei Liu Peng Hou Jun Xue Jianglu Chen Wanxu Zhang Wanmao Liu Keru Wang Shaokun Li 《The Crop Journal》 SCIE CAS CSCD 2019年第3期322-334,共13页
Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yiel... Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yield and water use efficiency(WUE) of high-yield maize under conditions of mulching and drip irrigation.A field experiment was conducted using three irrigation intervals in 2016: 6, 9, and 12 days(labeled D6, D9, and D12) and five irrigation intervals in 2017: 3, 6, 9, 12, and 15 days(D3, D6, D9, D12, and D15).In Xinjiang, an optimal irrigation quota is 540 mm for high-yield maize.The D3, D6, D9, D12, and D15 irrigation intervals gave grain yields of 19.7, 19.1–21.0, 18.8–20.0, 18.2–19.2, and 17.2 Mg ha^-1 and a WUE of 2.48, 2.53–2.80, 2.47–2.63, 2.34–2.45, and 2.08 kg m-3, respectively.Treatment D6 led to the highest soil water storage, but evapotranspiration and soil-water evaporation were lower than other treatments.These results show that irrigation interval D6 can help maintain a favorable soil-moisture environment in the upper-60-cm soil layer, reduce soilwater evaporation and evapotranspiration, and produce the highest yield and WUE.In this arid region and in other regions with similar soil and climate conditions, a similar irrigation interval would thus be beneficial for adjusting soil moisture to increase maize yield and WUE under conditions of mulching and drip irrigation. 展开更多
关键词 irrigation frequency Soil moisture MAIZE High yield(>15 Mg ha^(-1)) water use efficiency
下载PDF
Fruit Yield and Quality, and Irrigation Water Use Efficiency of Summer Squash Drip-Irrigated with Different Irrigation Quantities in a Semi-Arid Agricultural Area 被引量:5
19
作者 Yasemin Kuslu Ustun Sahin +1 位作者 Fatih M Kiziloglu Selcuk Memis 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第11期2518-2526,共9页
Fruit yield, yield components, fruit mineral content, total phenolic content, antioxidant activity and irrigation water use efifciency (IWUE) of summer squash responses to different irrigation quantities were evalua... Fruit yield, yield components, fruit mineral content, total phenolic content, antioxidant activity and irrigation water use efifciency (IWUE) of summer squash responses to different irrigation quantities were evaluated with a ifeld study. Irrigations were done when the total evaporated water from a Class A pan was about 30 mm. Different irrigation quantities were adjusted using three different plant-pan coefifcients (Kcp, 100% (Kcp1), 85% (Kcp2) and 70% (Kcp3)). Results indicated that lower irrigation quantities provided statistically lower yield and yield components. The highest seasonal fruit yield (80.0 t ha-1) was determined in the Kcp1 treatment, which applied the highest volume of irrigation water (452.9 mm). The highest early fruit yield, average fruit weight and fruit diameter, length and number per plant were also determined in the Kcp1 treatment, with values of 7.25 t ha-1, 264.1 g, 5.49 cm, 19.95 cm and 10.92, respectively. Although the IWUE value was the highest in the Kcp1 treatment (176.6 kg ha-1 mm-1), it was statistically similar to the value for Kcp3 treatment (157.1 kg ha-1 mm-1). Total phenolic content and antioxidant activity of fruits was higher in the Kcp1 (44.27 μg gallic acid equivalents (GAE) mg-1 fresh sample) and in the Kcp2 (84.75%) treatments, respectively. Major (Na, N, P, K, Ca, Mg and S) and trace (Fe, Cu, Mn, Zn and B) mineral contents of squash fruits were the highest in the Kcp2 treatment, with the exception of P, Ca and Cu. Mineral contents and total phenolic content were signiifcantly affected by irrigation quantities, but antioxidant activity was not affected. It can be concluded that the Kcp1 treatment was the most suitable for achieving higher yield and IWUE. However, the Kcp2 treatment will be the most suitable due to the high fruit quality and relatively high yield in water shortage conditions. 展开更多
关键词 summer squash drip irrigation irrigation water use efifciency total phenolic content antioxidant activity fruit mineral content
下载PDF
Field performance of alternate wetting and drying furrow irrigation on tomato crop growth, yield, water use efficiency, quality and profitability 被引量:8
20
作者 Khokan Kumer Sarker M.A.R.Akanda +3 位作者 S.K.Biswas D.K.Roy A.Khatun M.A.Goffar 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第10期2380-2392,共13页
Sustainable irrigation method is now essential for adaptation and adoption in the areas where water resources are limited. Therefore, a field experiment was conducted to test the performance of alternate wetting and d... Sustainable irrigation method is now essential for adaptation and adoption in the areas where water resources are limited. Therefore, a field experiment was conducted to test the performance of alternate wetting and drying furrow irrigation(AWDFI) on crop growth, yield, water use efficiency(WUE), fruit quality and profitability analysis of tomato. The experiment was laid out in randomized complete block design with six treatments replicated thrice during the dry seasons of 2013-2014 and 2014-2015. Irrigation water was applied through three ways of furrow: AWDFI, fixed wetting and drying furrow irrigation(FWDFI) and traditional(every) furrow irrigation(TFI). Each irrigation method was divided into two levels: irrigation up to 100 and 80% field capacity(FC). Results showed that plant biomass(dry matter) and marketable fruit yield of tomato did not differ significantly between the treatments of AWDFI and TFI, but significant difference was observed in AWDFI and in TFI compared to FWDFI at same irrigation level. AWDFI saved irrigation water by 35 to 38% for the irrigation levels up to 80 and 100% FC, compared to the TFI, respectively. AWDFI improved WUE by around 37 to 40% compared to TFI when irrigated with 100 and 80% FC, respectively. Fruit quality(total soluble solids and pulp) was found greater in AWDFI than in TFI. Net return from AWDFI technique was found nearly similar compared to TFI and more than FWDFI. The benefit cost ratio was viewed higher in AWDFI than in TFI and FWDFI by 2.8, 8.7 and 11, 10.4% when irrigation water was applied up to 100 and 80% FC, respectively. Unit production cost was obtained lower in AWDFI compared to TFI and FWDFI. However, AWDFI is a useful water-saving furrow irrigation technique which may resolve as an alternative choice compared with TFI in the areas where available water and supply methods are limited to irrigation. 展开更多
关键词 alternate furrow irrigation alternate drying process tomato yield quality water use efficiency net return
下载PDF
上一页 1 2 117 下一页 到第
使用帮助 返回顶部