期刊文献+
共找到12,594篇文章
< 1 2 250 >
每页显示 20 50 100
Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis 被引量:2
1
作者 Xiuling Tang Tao Yan +8 位作者 Saiying Wang Qingqing Liu Qi Yang Yongqiang Zhang Yujiao Li Yumei Wu Shuibing Liu Yulong Ma Le Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期642-649,共8页
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno... β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways. 展开更多
关键词 APOPTOSIS blood-brain barrier Β-SITOSTEROL cerebral ischemia/reperfusion injury cholesterol overload cholesterol transport endoplasmic reticulum stress ischemic stroke molecular docking NPC1L1
下载PDF
Homer1a reduces inflammatory response after retinal ischemia/reperfusion injury 被引量:1
2
作者 Yanan Dou Xiaowei Fei +7 位作者 Xin He Yu Huan Jialiang Wei Xiuquan Wu Weihao Lyu Zhou Fei Xia Li Fei Fei 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1608-1617,共10页
Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in ... Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in neuroinflammation in the cerebrum.However,the effects of Homerla on NLRP3inflammasomes in retinal ischemia/reperfusion injury caused by elevated IOP remain unknown.In our study,animal models we re constructed using C57BL/6J and Homer1^(flox/-)/Homerla^(+/-)/Nestin-Cre^(+/-)mice with elevated IOP-induced retinal ischemia/repe rfusion injury.For in vitro expe riments,the oxygen-glucose deprivation/repe rfusion injury model was constructed with M uller cells.We found that Homerla ove rexpression amelio rated the decreases in retinal thickness and Muller cell viability after ischemia/reperfusion injury.Furthermore,Homerla knockdown promoted NF-κB P65^(Ser536)activation via caspase-8,NF-κB P65 nuclear translocation,NLRP3 inflammasome formation,and the production and processing of interleukin-1βand inte rleukin-18.The opposite results we re observed with Homerla ove rexpression.Finally,the combined administration of Homerla protein and JSH-23 significantly inhibited the reduction in retinal thickness in Homer1^(flox/-)Homer1a^(+/-)/Nestin-Cre^(+/-)mice and apoptosis in M uller cells after ischemia/reperfusion injury.Taken together,these studies demonstrate that Homer1a exerts protective effects on retinal tissue and M uller cells via the caspase-8/NF-KB P65/NLRP3 pathway after I/R injury. 展开更多
关键词 CASPASE-8 Homer1a INTERLEUKIN-18 INTERLEUKIN-1Β intraocular pressure ischemia/reperfusion injury JSH-23 Müller cells NLRP3 nuclear factor-kB p65 RETINA
下载PDF
Injury/ischemia-induced stem cells: up-to-date knowledge and future perspectives for neural regeneration
3
作者 Takayuki Nakagomi 《Neural Regeneration Research》 SCIE CAS 2025年第3期797-798,共2页
Brain injuries like ischemic stroke induce endogenous stem cell production. Although the precise traits of stem cells in pathological brains remain unclear, we previously demonstrated that injury/ischemia-induced stem... Brain injuries like ischemic stroke induce endogenous stem cell production. Although the precise traits of stem cells in pathological brains remain unclear, we previously demonstrated that injury/ischemia-induced stem cells(iSCs)are present in the post-stroke mouse(Nakagomi et al.,2009)and human brains(Beppu et al.,2019). 展开更多
关键词 ischemia INJURIES
下载PDF
Endoplasmic reticulum stress and autophagy in cerebral ischemia/reperfusion injury:PERK as a potential target for intervention
4
作者 Ju Zheng Yixin Li +8 位作者 Ting Zhang Yanlin Fu Peiyan Long Xiao Gao Zhengwei Wang Zhizhong Guan Xiaolan Qi Wei Hong Yan Xiao 《Neural Regeneration Research》 SCIE CAS 2025年第5期1455-1466,共12页
Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb... Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury. 展开更多
关键词 apoptosis ATF4 AUTOPHAGY C/EBP homologous protein cerebral ischemia/reperfusion injury EIF2Α endoplasmic reticulum stress PERK
下载PDF
The action mechanism by which C1q/tumor necrosis factor-related protein-6 alleviates cerebral ischemia/reperfusion injury in diabetic mice
5
作者 Bo Zhao Mei Li +6 位作者 Bingyu Li Yanan Li Qianni Shen Jiabao Hou Yang Wu Lijuan Gu Wenwei Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2019-2026,共8页
Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of... Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway. 展开更多
关键词 brain C1q/tumor necrosis factor-related protein-6 cerebral apoptosis diabetes inflammation ischemia/reperfusion injury NEURON NEUROPROTECTION oxidative damage Sirt1
下载PDF
A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury
6
作者 Qi Liu Jianye Xie +5 位作者 Runxue Zhou Jin Deng Weihong Nie Shuwei Sun Haiping Wang Chunying Shi 《Neural Regeneration Research》 SCIE CAS 2025年第2期503-517,共15页
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv... Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 angiogenesis biomaterial blood-brain barrier cerebral ischemia/reperfusion injury control release drug delivery inflammation QK peptides matrix metalloproteinase-2 NEUROPROTECTION self-assembling nanofiber hydrogel
下载PDF
N-acetylserotonin alleviates retinal ischemia-reperfusion injury via HMGB1/RAGE/NF-κB pathway in rats
7
作者 Yu-Ze Zhao Xue-Ning Zhang +7 位作者 Yi Yin Pei-Lun Xiao Meng Gao Lu-Ming Zhang Shuan-Hu Zhou Shu-Na Yu Xiao-Li Wang Yan-Song Zhao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第2期228-238,共11页
AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for a... AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for advanced glycation end-products(RAGE)/nuclear factor-kappa B(NF-κB)signaling pathway.METHODS:A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye.Eighty male Sprague Dawley were randomly divided into five groups:sham group(n=8),RIR group(n=28),RIR+NAS group(n=28),RIR+FPS-ZM1 group(n=8)and RIR+NAS+FPS-ZM1 group(n=8).The therapeutic effects of NAS were examined by hematoxylin-eosin(H&E)staining,and retinal ganglion cells(RGCs)counting.The expression of interleukin 1 beta(IL-1β),HMGB1,RAGE,and nod-like receptor 3(NLRP3)proteins and the phosphorylation of nuclear factorkappa B(p-NF-κB)were analyzed by immunohistochemistry staining and Western blot analysis.The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay(ELISA).RESULTS:H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats.With NAS therapy,the HMGB1 and RAGE expression decreased significantly,and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression.Additionally,NAS exhibited an anti-inflammatory effect by reducing IL-1βexpression.The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression,so as to the IL-1βexpression and retinal edema,accompanied by an increase of RGCs in RIR rats.CONCLUSION:NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway,which may be a useful therapeutic target for retinal disease. 展开更多
关键词 retinal diseases retinal ischemia—reperfusion injury N-ACETYLSEROTONIN high mobility group box 1 receptor for advanced glycation end-products nuclear factor-κB RATS
下载PDF
Selective ischemic-hemisphere targeting Ginkgolide B liposomes with improved solubility and therapeutic efficacy for cerebral ischemia-reperfusion injury 被引量:2
8
作者 Yang Li Miaomiao Zhang +5 位作者 Shiyi Li Longlong Zhang Jisu Kim Qiujun Qiu Weigen Lu Jianxin Wang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第2期76-93,共18页
Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the pre... Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the presence of the blood-brain barrier(BBB),which affects the intracerebral delivery of drugs.Ginkgolide B(GB),a major bioactive component in commercially available products of Ginkgo biloba,has been shown significance in CI/RI treatment by regulating inflammatory pathways,oxidative damage,and metabolic disturbance,and seems to be a candidate for stroke recovery.However,limited by its poor hydrophilicity and lipophilicity,the development of GB preparations with good solubility,stability,and the ability to cross the BBB remains a challenge.Herein,we propose a combinatorial strategy by conjugating GB with highly lipophilic docosahexaenoic acid(DHA)to obtain a covalent complex GB-DHA,which can not only enhance the pharmacological effect of GB,but can also be encapsulated in liposomes stably.The amount of finally constructed Lipo@GB-DHA targeting to ischemic hemisphere was validated 2.2 times that of free solution in middle cerebral artery occlusion(MCAO)rats.Compared to the marketed ginkgolide injection,Lipo@GB-DHA significantly reduced infarct volume with better neurobehavioral recovery in MCAO rats after being intravenously administered both at 2 h and 6 h post-reperfusion.Low levels of reactive oxygen species(ROS)and high neuron survival in vitro was maintained via Lipo@GB-DHA treatment,while microglia in the ischemic brain were polarized from the pro-inflammatory M1 phenotype to the tissue-repairing M2 phenotype,which modulate neuroinflammatory and angiogenesis.In addition,Lipo@GB-DHA inhibited neuronal apoptosis via regulating the apoptotic pathway and maintained homeostasis by activating the autophagy pathway.Thus,transforming GB into a lipophilic complex and loading it into liposomes provides a promising nanomedicine strategy with excellent CI/RI therapeutic efficacy and industrialization prospects. 展开更多
关键词 Ginkgolide B Cerebral ischemia reperfusion injury(CI/RI) Docosahexaenoic acid Liposomes Brain targeting MICROGLIA
下载PDF
Upregulation of CDGSH iron sulfur domain 2 attenuates cerebral ischemia/reperfusion injury 被引量:1
9
作者 Miao Hu Jie Huang +6 位作者 Lei Chen Xiao-Rong Sun Zi-Meng Yao Xu-Hui Tong Wen-Jing Jin Yu-Xin Zhang Shu-Ying Dong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1512-1520,共9页
CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebr... CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebral ischemia/reperfusion injury.To validate this hypothesis in the present study,we established mouse models of occlusion of the middle cerebral artery and HT22 cell models of oxygen-glucose deprivation and reoxygenation to mimic cerebral ischemia/reperfusion injury in vivo and in vitro,respectively.We found remarkably decreased CDGSH iron sulfur domain 2 expression in the mouse brain tissue and HT22 cells.When we used adeno-associated virus and plasmid to up-regulate CDGSH iron sulfur domain 2 expression in the brain tissue and HT22 cell models separately,mouse neurological dysfunction was greatly improved;the cerebral infarct volume was reduced;the survival rate of HT22 cells was increased;HT22 cell injury was alleviated;the expression of ferroptosis-related glutathione peroxidase 4,cystine-glutamate antiporter,and glutathione was increased;the levels of malondialdehyde,iron ions,and the expression of transferrin receptor 1 were decreased;and the expression of nuclear-factor E2-related factor 2/heme oxygenase 1 was increased.Inhibition of CDGSH iron sulfur domain 2 upregulation via the nuclear-factor E2-related factor 2 inhibitor ML385 in oxygen-glucose deprived and reoxygenated HT22 cells blocked the neuroprotective effects of CDGSH iron sulfur domain 2 up-regulation and the activation of the nuclear-factor E2-related factor 2/heme oxygenase 1 pathway.Our data indicate that the up-regulation of CDGSH iron sulfur domain 2 can attenuate cerebral ischemia/reperfusion injury,thus providing theoretical support from the perspectives of cytology and experimental zoology for the use of this protein as a therapeutic target in patients with cerebral ischemia/reperfusion injury. 展开更多
关键词 cerebral ischemia/reperfusion injury CDGSH iron sulfur domain 2 ferroptosis glutathione peroxidase 4 heme oxygenase 1 HT22 nuclear-factor E2-related factor 2 oxygen-glucose deprivation/reoxygenation injury stroke transferrin receptor 1
下载PDF
A molecular probe carrying anti-tropomyosin 4 for early diagnosis of cerebral ischemia/reperfusion injury
10
作者 Teng-Fei Yu Kun Wang +5 位作者 Lu Yin Wen-Zhe Li Chuan-Ping Li Wei Zhang Jie Tian Wen He 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1321-1324,共4页
In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cere... In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cerebral ischemia/reperfusion injury and observed microvascular changes in the brain using photoacoustic imaging with ultrasonography.At each measured time point,the total photoacoustic signal was significantly higher on the affected side than on the healthy side.Twelve hours after reperfusion,cerebral perfusion on the affected side increased,cerebrovascular injury worsened,and anti-tropomyosin 4 expression increased.Twenty-four hours after reperfusion and later,perfusion on the affected side declined slowly and stabilized after 1 week;brain injury was also alleviated.Histopathological and immunohistochemical examinations confirmed the brain injury tissue changes.The nanoshell molecular probe carrying anti-tropomyosin 4 has potential for use in early diagnosis of cerebral ischemia/reperfusion injury and evaluating its progression. 展开更多
关键词 cerebral ischemia/reperfusion injury diagnosis dynamic monitoring ischemic stroke middle cerebral artery occlusion molecular probe NANOSHELLS photoacoustic imaging tropomyosin 4 ULTRASOUND
下载PDF
Eph receptor A4 regulates motor neuron ferroptosis in spinal cord ischemia/reperfusion injury in rats
11
作者 Yan Dong Chunyu Ai +5 位作者 Ying Chen Zaili Zhang Dong Zhang Sidan Liu Xiangyi Tong Hong Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2219-2228,共10页
Previous studies have shown that the receptor tyrosine kinase Eph receptor A4(EphA4) is abundantly expressed in the nervous system. The EphA4 signaling pathway plays an important role in regulating motor neuron ferrop... Previous studies have shown that the receptor tyrosine kinase Eph receptor A4(EphA4) is abundantly expressed in the nervous system. The EphA4 signaling pathway plays an important role in regulating motor neuron ferroptosis in motor neuron disease. To investigate whether EphA4 signaling is involved in ferroptosis in spinal cord ischemia/reperfusion injury, in this study we established a rat model of spinal cord ischemia/reperfusion injury by clamping the left carotid artery and the left subclavian artery. We found that spinal cord ischemia/reperfusion injury increased EphA4 expression in the neurons of anterior horn, markedly worsened ferroptosis-related indicators, substantially increased the number of mitochondria exhibiting features consistent with ferroptosis, promoted deterioration of motor nerve function, increased the permeability of the blood-spinal cord barrier, and increased the rate of motor neuron death. Inhibition of EphA4 largely rescued these effects. However, intrathecal administration of the ferroptosis inducer Erastin counteracted the beneficial effects conferred by treatment with the EphA4 inhibitor. Mass spectrometry and a PubMed search were performed to identify proteins that interact with EphA4, with the most notable being Beclin1 and Erk1/2. Our results showed that inhibition of EphA4 expression reduced binding to Beclin1, markedly reduced p-Beclin1, and reduced Beclin1-XCT complex formation. Inhibition of EphA4 also reduced binding to p-Erk1/2 and markedly decreased the expression of c-Myc, transferrin receptor 1, and p-Erk1/2. Additionally, we observed co-localization of EphA4 and p-Beclin1 and of EphA4 and p-ERK1/2 in neurons in the anterior horn. In conclusion, EphA4 participates in regulating ferroptosis of spinal motor neurons in the anterior horn in spinal cord ischemia/reperfusion injury by promoting formation of the Beclin1-XCT complex and activating the Erk1/2/c-Myc/transferrin receptor 1 axis. 展开更多
关键词 BECLIN1 C-MYC EphA4 ERK1/2 ferroptosis motor neuron P-ERK1/2 RAT spinal cord ischemia/reperfusion injury transferrin receptor 1
下载PDF
Atorvastatin Alleviates Myocardial Ischemia-Reperfusion Injury via miR-26a-5p/FOXO1
12
作者 Jinlan Duan Tong Zhang +3 位作者 Ying Zhu Bingtuan Lu Qi Zheng Ninghui Mu 《Journal of Biosciences and Medicines》 CAS 2023年第2期215-231,共17页
Purpose: Ischemia-reperfusion (I/R) injury exacerbates myocardial cell death (including apoptosis and necrosis), leading to complications such as arrhythmias, myocardial stenosis, microvascular obstruction and heart f... Purpose: Ischemia-reperfusion (I/R) injury exacerbates myocardial cell death (including apoptosis and necrosis), leading to complications such as arrhythmias, myocardial stenosis, microvascular obstruction and heart failure, and it is particularly important to seek new strategies to mitigate reperfusion injury. In this paper, we will investigate whether atorvastatin can alleviate myocardial ischemia-reperfusion injury and verify its molecular mechanism. Methods: We successfully constructed a hypoxia-reperfusion (H/R) H9c2 cell model and transfected miR-26a-5p mimic, miR-26a-5p inhibitor and its negative control NC-mimic or NC-inhibitor into H9c2 cells using a transfection kit. The expression of miR-26a-5p and FOXO1 were detected by RT-qPCR assay, the expression of related proteins by Western blot assay, the cell viability of H9c2 cells by CCK-8 assay, the apoptosis rate of H9c2 cells by flow cytometry, the CK and LDH activity in cells by CK and LDH assay kits. The targeting relationship between miR-26a-5p and FOXO1 was verified by dual luciferase reporter gene assay. Results: MiR-26a-5p expression was decreased in H/R-induced cells and FOXO1 expression was increased in H/R-induced cells. Atorvastatin alleviated H/R injury in cardiomyocytes and was most effective at a concentration of 1 μM. Atorvastatin alleviated H/R injury in cardiomyocytes by upregulating miR-26a-5p expression, miR-26a-5p and FOXO1 were negatively regulated by targeting. Conclusion: Atorvastatin can alleviate H/R injury in cardiomyocytes by regulating miR-26a-5p/FOXO1. 展开更多
关键词 Myocardial ischemia-Reperfusion injury ATORVASTATIN miR-26a-5p FOXO1
下载PDF
Protective Effects of Zingiberis and Acniti Praeparatae Decoction on Myocardial IschemiaReperfusion Injury in Rats
13
作者 史琴 彭芳 +1 位作者 李娟 赵云华 《Agricultural Science & Technology》 CAS 2014年第8期1370-1373,共4页
This study aimed to investigate the protective effects of zin-giberis and acniti praeparatae decoction on oxidative stress injury induced by my-ocardial ischemia reperfusion in rats. [Method] Myocardial ischemia-reper... This study aimed to investigate the protective effects of zin-giberis and acniti praeparatae decoction on oxidative stress injury induced by my-ocardial ischemia reperfusion in rats. [Method] Myocardial ischemia-reperfusion was performed by ligation of the left anterior descending coronary artery for 30 min, fol-lowed by reperfusion for 60 min. The effects of zingiberis and acniti praeparatae decoction on ECG ST segment, myocardial infarction percentage, malondialdehyde (MDA) content in the serum, superoxide dismutase (SOD) activity and other indica-tors were observed. [Result] Zingiberis and acniti praeparatae decoction could effec-tively inhibit ECG ST segment elevation caused by myocardial ischemia-reperfusion injuries, reduce the percentage of myocardial infarction, decline the content of MDA in the serum, and increase the activity of SOD. [Conclusion] Zingiberis and acniti praeparatae decoction exhibits protective effects on oxidative injuries caused by my-ocardial ischemia-reperfusion injuries in rats, which may be involved in reducing the formation of myocardial free radicals and enhancing antioxidant capacity of my-ocardium. 展开更多
关键词 Zingiberis and acniti praeparatae decoction Myocardial ischemia My-ocardial reperfusion injury Oxidative stress
下载PDF
Ligustrazine monomer against cerebral ischemia/reperfusion injury 被引量:55
14
作者 Hai-jun Gao Peng-fei Liu +7 位作者 Pei-wen Li Zhuo-yan Huang Feng-bo Yu Ting Lei Yong Chen Ye Cheng Qing-chun Mu Hai-yan Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第5期832-840,共9页
Ligustrazine (2,3,5,6-tetramethylpyrazine) is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease. The mecha- nism of action of ligustraz... Ligustrazine (2,3,5,6-tetramethylpyrazine) is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease. The mecha- nism of action of ligustrazine use against ischemic cerebrovascular diseases remains unclear at present. This study summarizes its protective effect, the optimum time window of administra- tion, and the most effective mode of administration for clinical treatment of cerebral ischemia/ reperfusion injury. We examine the effects of ligustrazine on suppressing excitatory amino acid release, promoting migration, differentiation and proliferation of endogenous neural stem cells. We also looked at its effects on angiogenesis and how it inhibits thrombosis, the inflammatory response, and apoptosis after cerebral ischemia. We consider that ligustrazine gives noticeable protection from cerebral ischemia/reperfusion injury. The time window of ligustrazine admin- istration is limited. The protective effect and time window of a series of derivative monomers of ligustrazine such as 2-[(1,1-dimethylethyl)oxidoimino]methyl]-3,5,6-trimethylpyrazine, CXC137 and CXC 195 after cerebral ischemia were better than ligustrazine. 展开更多
关键词 nerve regeneration LIGUSTRAZINE ischemia cerebral ischemia/reperfusion injury neuralregeneration
下载PDF
Role of P-selectin and anti-P-selectin monoclonal antibody in apoptosis during hepatic/renal ischemia-reperfusion injury 被引量:10
15
作者 Pei Wu Xiao Li +5 位作者 Tong Zhou Ming Jun Zhang Jin Lian Chen Wei Ming Wang Nan Chen De Chang Dong 《World Journal of Gastroenterology》 SCIE CAS CSCD 2000年第2期244-247,共4页
AIM To evaluale the potential role of P-selectinand anti-P-selectin monoclonal antibody(mAb)in apoptosis during hepatic/renal ischemia-reperfusion injury.METHODS Plasma P-selectin level,hepatic/renal P-selectin expres... AIM To evaluale the potential role of P-selectinand anti-P-selectin monoclonal antibody(mAb)in apoptosis during hepatic/renal ischemia-reperfusion injury.METHODS Plasma P-selectin level,hepatic/renal P-selectin expression and cell apoptosiswere detected in rat model of hepatic/ renalischemia-reperfusion injury.ELISA,immunohist-ochemistry and TUNEL were used.Someischemia-reperfusion rats were treated with anti-P-selectin mAb.RESULTS Hepatic/renal function insuffic-iency,up-regulated expression of P-selectin inplasma and hepatic/renal tissue,hepatic/renalhistopathological damages and cell apoptosiswere found in rats with hepatic/renal ischemia-reperfusion injury,while these changes becameless conspicuous in animals treated with anti-P-selectin mAb.CONCLUSION P-selectin might mediateneutrophil infiltration and cell apoptosis andcontribute to hepatic/renal ischemia-reperfusioninjury,anti-P-selectin mAb might be an efficientapproach for the prevention and treatment ofhepatic/renal ischemia-reperfusion injury. 展开更多
关键词 HEPATIC ischemia REPERFUSION injury renal ischemia REPERFUSION injury P-SELECTIN antibody monoclonal APOPTOSIS
下载PDF
Autophagy: novel insights into therapeutic target of electroacupuncture against cerebral ischemia/reperfusion injury 被引量:47
16
作者 Ya-Guang Huang Wei Tao +3 位作者 Song-Bai Yang Jin-Feng Wang Zhi-Gang Mei Zhi-Tao Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第6期954-961,共8页
Electroacupuncture is known as an effective adjuvant therapy in ischemic cerebrovascular disease. However, its underlying mechanisms remain unclear. Studies suggest that autophagy, which is essential for cell survival... Electroacupuncture is known as an effective adjuvant therapy in ischemic cerebrovascular disease. However, its underlying mechanisms remain unclear. Studies suggest that autophagy, which is essential for cell survival and cell death, is involved in cerebral ischemia reperfusion injury and might be modulate by electroacupuncture therapy in key ways. This paper aims to provide novel insights into a therapeutic target of electroacupuncture against cerebral ischemia/reperfusion injury from the perspective of autophagy. Here we review recent studies on electroacupuncture regulation of autophagy-related markers such as UNC-51-like kinase-1 complex, Beclin1, microtubule-associated protein-1 light chain 3, p62, and autophagosomes for treating cerebral ischemia/reperfusion injury. The results of these studies show that electroacupuncture may affect the initiation of autophagy, vesicle nucleation, expansion and maturation of autophagosomes, as well as fusion and degradation of autophagolysosomes. Moreover, studies indicate that electroacupuncture probably modulates autophagy by activating the mammalian target of the rapamycin signaling pathway.This review thus indicates that autophagy is a therapeutic target of electroacupuncture treatment against ischemic cerebrovascular diseases. 展开更多
关键词 nerve REGENERATION AUTOPHAGY ELECTROACUPUNCTURE cerebral ischemia/REPERFUSION injury mTOR LC3 BECLIN1 P62 neuroprotection neural REGENERATION
下载PDF
Effect of peroxisome proliferator-activated receptor gamma agonist on heart of rabbits with acute myocardial ischemia/reperfusion injury 被引量:14
17
作者 Qian Hu Jiong Chen +1 位作者 Chao Jiang Heng-Fang Liu 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2014年第4期271-275,共5页
Objective:To explore protective effect of rosiglitazone on myocardial ischemia reperfusion injury.Methods:A total of 48 male SD rats were randomly divided into control group(A),I/R group(B),high dose of rosiglitazone(... Objective:To explore protective effect of rosiglitazone on myocardial ischemia reperfusion injury.Methods:A total of 48 male SD rats were randomly divided into control group(A),I/R group(B),high dose of rosiglitazone(C),low dose of rosiglitazone(D).Plasm concentration of creatine kinase(CK),CK-MB,hsCRP,Superoxide dismutase(SOD),malondialdehyde(MDA),glutathione peroxidase(GSH-Px),nitric oxide(NO)and endothelin(ET)were measured 1 h later after I/R.24 h after I/R hearts were harvested to observe pathological and ultrastructural changes.Immunohistochemistry and western blotting was used to test CD40 expression in myocardial tissue.Area of myocardial infarction were tested,arrhythmia rate during I/R was recorded.Results:Plasm concentration of creatine kinase(CK),CK-MB,hsCRP,NO,MDA and ET were decreased in group C,D compared with group B.Plasm concentration of T-SOD and GSHPx was increased significantly in group C,D compared with group B.Compared with group B,pathological and ultrastructural changes in group C,D were slightly.Myocardial infarction area and arrhythmia rate were lower in group C,D compare with group B.Conclusions:Rosiglitazone can protect myocardium from I/R injury by enhancing T-SOD and GSH-Px concentration,inhibit inflammatory reaction,improve endothelial function,reduce oxidative stress and calcium overload. 展开更多
关键词 ROSIGLITAZONE ischemia REPERFUSION injury RABBIT
下载PDF
Protective effect of hyperoside on cardiac ischemia reperfusion injury through inhibition of ER stress and activation of Nrf2 signaling 被引量:14
18
作者 Jia-Yin Hou Ying Liu +1 位作者 Liang Liu Xin-Ming Li 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2016年第1期73-78,共6页
Objective:To study the protective effect of hyperoside(Hyp) on cardiac ischemia reperfusion injury and its potential mechanism.Methods:Rats were divided into two groups for the evaluation,the Hyp(50 uM Hyp;n=8) and th... Objective:To study the protective effect of hyperoside(Hyp) on cardiac ischemia reperfusion injury and its potential mechanism.Methods:Rats were divided into two groups for the evaluation,the Hyp(50 uM Hyp;n=8) and the control group(n=8).Rat hearts were isolated and perfused with Krebs-Henseleit buffer(KHB) for 30 min.After being inhibited with cardioplegic solution,they were stored for 4 h in B21 solution at 4℃.Afterwards,rat hearts were perfused with KHB again for 45 min.In this period.Hyp was added into solutions of cardioplegia for storage and KHB.Parameters of cardiac functions,including heart rate,the systolic pressure of the left ventricle,the end-diastolic pressure of the left ventricle,the developed pressure of the left ventricle,the left-ventricular systolic pressure and the peak rise rate of the pressure of the left ventricle were recorded.The levels of adenosine triphosphate(ATP),the content of malondialdehyde and apoptotic cells were determined to evaluate the protective effect of Hyp on hearts suffered from ischemia reperfusion injury.Moreover,cultured cardiac myocytes were subjected to the process simulating ischemia/reperfusion.What were analyzed included the endoplasmic reticulum(ER) stress hallmarks expressions,such as binding immunoglobulin protein and C/EBP homologous protein,using the western blot and real-time PCR.Besides,the NF-E2-related factor 2(Nrf2) expression was measured to explore the potential mechanism.Results:Compared with the control group,the Hyp group had better cardiac functional parameters and higher ATP levels;pretreatment of Hyp greatly relieved the apoptosis of myocyte,decreased oxidative stress as well as ER stress and activated the signaling pathway of anti-oxidative Nrf2 to a further extent.Conclusions:Hyp plays an important role in preserving cardiac function by improving ATP levels of tissue,easing oxidative injury of myocardium and reducing apoptosis following IRI dramatically,while the ER stress inhibition and the downstream Nrf2 signaling activation may contribute to the effects of protection. 展开更多
关键词 HYPEROSIDE ischemia/REPERFUSION injury CARDIOPROTECTION ER stress NRF2
下载PDF
Ginsenoside Rd inhibits apoptosis following spinal cord ischemia/reperfusion injury 被引量:14
19
作者 Baogang Wang Qingsan Zhu +2 位作者 Xiaxia Man Li Guo Liming Hao 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第18期1678-1687,共10页
Ginsenoside Rd has a clear neuroprotective effect against ischemic stroke. We aimed to verify the neuroprotective effect of ginsenoside Rd in spinal cord ischemia/reperfusion injury and explore its anti-apoptotic mech... Ginsenoside Rd has a clear neuroprotective effect against ischemic stroke. We aimed to verify the neuroprotective effect of ginsenoside Rd in spinal cord ischemia/reperfusion injury and explore its anti-apoptotic mechanisms. We established a spinal cord ischemia/reperfusion injury model in rats through the occlusion of the abdominal aorta below the level of the renal artery for 1 hour. Successfully established models were injected intraperitoneally with 6.25, 12.5, 25 or 50 mg/kg per day ginsenoside Rd. Spinal cord morphology was observed at 1, 3, 5 and 7 days after spinal cord ischemia/reperfusion injury. Intraperitoneal injection of ginsenoside Rd in ischemia/reperfusion injury rats not only improved hindlimb motor function and the morphology of motor neurons in the anterior horn of the spinal cord, but it also reduced neuronal apoptosis. The optimal dose of ginsenoside Rd was 25 mg/kg per day and the optimal time point was 5 days after ischemia/ reperfusion. Immunohistochemistry and western blot analysis showed ginsenoside Rd dose-de- pendently inhibited expression of pro-apoptotic Caspase 3 and down-regulated the expression of the apoptotic proteins ASK1 and JNK in the spinal cord of rats with spinal cord ischemia/reper- fusion injury. These findings indicate that ginsenoside Rd exerts neuroprotective effects against spinal cord ischemia/reperfusion injury and the underlying mechanisms are achieved through the inhibition of ASK1-JNK pathway and the down-regulation of Caspase 3 expression. 展开更多
关键词 nerve regeneration spinal cord injury ginsenoside Rd ischemia/reperfusion injury APOPTOSIS ASKI INK Caspase 3 neural regeneration
下载PDF
Heme oxygenase-1 protects donor livers from ischemia/reperfusion injury:The role of Kupffer cells 被引量:29
20
作者 Zeng, Zhong Huang, Han-Fei +2 位作者 Chen, Ming-Qing Song, Fei Zhang, Yu-Jun 《World Journal of Gastroenterology》 SCIE CAS CSCD 2010年第10期1285-1292,共8页
AIM:To examine whether heme oxygenase (HO)-1 overexpression would exert direct or indirect effects on Kupffer cells activation, which lead to aggravation of reperfusion injury.METHODS: Donors were pretreated with coba... AIM:To examine whether heme oxygenase (HO)-1 overexpression would exert direct or indirect effects on Kupffer cells activation, which lead to aggravation of reperfusion injury.METHODS: Donors were pretreated with cobalt protoporphyrin (CoPP) or zinc protoporphyrin (ZnPP), HO-1 inducer and antagonist, respectively. Livers were stored at 4℃ for 24 h before transplantation. Kupffer cells were isolated and cultured for 6 h after liver reperfusion.RESULTS: Postoperatively, serum transaminases were significantly lower and associated with less liver injury when donors were pretreated with CoPP, as compared with the ZnPP group. Production of the cytokines tumor necrosis factor-α and interleukin-6 generated by Kupffer cells decreased in the CoPP group. The CD14 expression levels (RT-PCR/Western blots) of Kupffer cells from CoPP-pretreated liver grafts reduced.CONCLUSION: The study suggests that the potential utility of HO-1 overexpression in preventing ischemia/reperfusion injury results from inhibition of Kupffer cells activation. 展开更多
关键词 Heme oxygenase-1 Kupffer cells ischemia/reperfusion injury Liver transplantation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部