期刊文献+
共找到11,715篇文章
< 1 2 250 >
每页显示 20 50 100
A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury
1
作者 Qi Liu Jianye Xie +5 位作者 Runxue Zhou Jin Deng Weihong Nie Shuwei Sun Haiping Wang Chunying Shi 《Neural Regeneration Research》 SCIE CAS 2025年第2期503-517,共15页
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv... Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 angiogenesis biomaterial blood-brain barrier cerebral ischemia/reperfusion injury control release drug delivery inflammation QK peptides matrix metalloproteinase-2 NEUROPROTECTION self-assembling nanofiber hydrogel
下载PDF
Endoplasmic reticulum stress and autophagy in cerebral ischemia/reperfusion injury:PERK as a potential target for intervention
2
作者 Ju Zheng Yixin Li +8 位作者 Ting Zhang Yanlin Fu Peiyan Long Xiao Gao Zhengwei Wang Zhizhong Guan Xiaolan Qi Wei Hong Yan Xiao 《Neural Regeneration Research》 SCIE CAS 2025年第5期1455-1466,共12页
Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb... Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury. 展开更多
关键词 APOPTOSIS ATF4 AUTOPHAGY C/EBP homologous protein cerebral ischemia/reperfusion injury EIF2Α endoplasmic reticulum stress PERK
下载PDF
The action mechanism by which C1q/tumor necrosis factor-related protein-6 alleviates cerebral ischemia/reperfusion injury in diabetic mice
3
作者 Bo Zhao Mei Li +6 位作者 Bingyu Li Yanan Li Qianni Shen Jiabao Hou Yang Wu Lijuan Gu Wenwei Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2019-2026,共8页
Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of... Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway. 展开更多
关键词 brain C1q/tumor necrosis factor-related protein-6 cerebral apoptosis diabetes inflammation ischemia/reperfusion injury NEURON NEUROPROTECTION oxidative damage Sirt1
下载PDF
Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis
4
作者 Xiuling Tang Tao Yan +8 位作者 Saiying Wang Qingqing Liu Qi Yang Yongqiang Zhang Yujiao Li Yumei Wu Shuibing Liu Yulong Ma Le Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期642-649,共8页
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno... β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways. 展开更多
关键词 APOPTOSIS blood-brain barrier Β-SITOSTEROL cerebral ischemia/reperfusion injury cholesterol overload cholesterol transport endoplasmic reticulum stress ischemic stroke molecular docking NPC1L1
下载PDF
Homer1a reduces inflammatory response after retinal ischemia/reperfusion injury
5
作者 Yanan Dou Xiaowei Fei +7 位作者 Xin He Yu Huan Jialiang Wei Xiuquan Wu Weihao Lyu Zhou Fei Xia Li Fei Fei 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1608-1617,共10页
Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in ... Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in neuroinflammation in the cerebrum.However,the effects of Homerla on NLRP3inflammasomes in retinal ischemia/reperfusion injury caused by elevated IOP remain unknown.In our study,animal models we re constructed using C57BL/6J and Homer1^(flox/-)/Homerla^(+/-)/Nestin-Cre^(+/-)mice with elevated IOP-induced retinal ischemia/repe rfusion injury.For in vitro expe riments,the oxygen-glucose deprivation/repe rfusion injury model was constructed with M uller cells.We found that Homerla ove rexpression amelio rated the decreases in retinal thickness and Muller cell viability after ischemia/reperfusion injury.Furthermore,Homerla knockdown promoted NF-κB P65^(Ser536)activation via caspase-8,NF-κB P65 nuclear translocation,NLRP3 inflammasome formation,and the production and processing of interleukin-1βand inte rleukin-18.The opposite results we re observed with Homerla ove rexpression.Finally,the combined administration of Homerla protein and JSH-23 significantly inhibited the reduction in retinal thickness in Homer1^(flox/-)Homer1a^(+/-)/Nestin-Cre^(+/-)mice and apoptosis in M uller cells after ischemia/reperfusion injury.Taken together,these studies demonstrate that Homer1a exerts protective effects on retinal tissue and M uller cells via the caspase-8/NF-KB P65/NLRP3 pathway after I/R injury. 展开更多
关键词 CASPASE-8 Homer1a INTERLEUKIN-18 INTERLEUKIN-1Β intraocular pressure ischemia/reperfusion injury JSH-23 Müller cells NLRP3 nuclear factor-kB p65 RETINA
下载PDF
N-acetylserotonin alleviates retinal ischemia-reperfusion injury via HMGB1/RAGE/NF-κB pathway in rats
6
作者 Yu-Ze Zhao Xue-Ning Zhang +7 位作者 Yi Yin Pei-Lun Xiao Meng Gao Lu-Ming Zhang Shuan-Hu Zhou Shu-Na Yu Xiao-Li Wang Yan-Song Zhao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第2期228-238,共11页
AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for a... AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for advanced glycation end-products(RAGE)/nuclear factor-kappa B(NF-κB)signaling pathway.METHODS:A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye.Eighty male Sprague Dawley were randomly divided into five groups:sham group(n=8),RIR group(n=28),RIR+NAS group(n=28),RIR+FPS-ZM1 group(n=8)and RIR+NAS+FPS-ZM1 group(n=8).The therapeutic effects of NAS were examined by hematoxylin-eosin(H&E)staining,and retinal ganglion cells(RGCs)counting.The expression of interleukin 1 beta(IL-1β),HMGB1,RAGE,and nod-like receptor 3(NLRP3)proteins and the phosphorylation of nuclear factorkappa B(p-NF-κB)were analyzed by immunohistochemistry staining and Western blot analysis.The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay(ELISA).RESULTS:H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats.With NAS therapy,the HMGB1 and RAGE expression decreased significantly,and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression.Additionally,NAS exhibited an anti-inflammatory effect by reducing IL-1βexpression.The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression,so as to the IL-1βexpression and retinal edema,accompanied by an increase of RGCs in RIR rats.CONCLUSION:NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway,which may be a useful therapeutic target for retinal disease. 展开更多
关键词 retinal diseases retinal ischemiareperfusion injury N-ACETYLSEROTONIN high mobility group box 1 receptor for advanced glycation end-products nuclear factor-κB RATS
下载PDF
Upregulation of CDGSH iron sulfur domain 2 attenuates cerebral ischemia/reperfusion injury
7
作者 Miao Hu Jie Huang +6 位作者 Lei Chen Xiao-Rong Sun Zi-Meng Yao Xu-Hui Tong Wen-Jing Jin Yu-Xin Zhang Shu-Ying Dong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1512-1520,共9页
CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebr... CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebral ischemia/reperfusion injury.To validate this hypothesis in the present study,we established mouse models of occlusion of the middle cerebral artery and HT22 cell models of oxygen-glucose deprivation and reoxygenation to mimic cerebral ischemia/reperfusion injury in vivo and in vitro,respectively.We found remarkably decreased CDGSH iron sulfur domain 2 expression in the mouse brain tissue and HT22 cells.When we used adeno-associated virus and plasmid to up-regulate CDGSH iron sulfur domain 2 expression in the brain tissue and HT22 cell models separately,mouse neurological dysfunction was greatly improved;the cerebral infarct volume was reduced;the survival rate of HT22 cells was increased;HT22 cell injury was alleviated;the expression of ferroptosis-related glutathione peroxidase 4,cystine-glutamate antiporter,and glutathione was increased;the levels of malondialdehyde,iron ions,and the expression of transferrin receptor 1 were decreased;and the expression of nuclear-factor E2-related factor 2/heme oxygenase 1 was increased.Inhibition of CDGSH iron sulfur domain 2 upregulation via the nuclear-factor E2-related factor 2 inhibitor ML385 in oxygen-glucose deprived and reoxygenated HT22 cells blocked the neuroprotective effects of CDGSH iron sulfur domain 2 up-regulation and the activation of the nuclear-factor E2-related factor 2/heme oxygenase 1 pathway.Our data indicate that the up-regulation of CDGSH iron sulfur domain 2 can attenuate cerebral ischemia/reperfusion injury,thus providing theoretical support from the perspectives of cytology and experimental zoology for the use of this protein as a therapeutic target in patients with cerebral ischemia/reperfusion injury. 展开更多
关键词 cerebral ischemia/reperfusion injury CDGSH iron sulfur domain 2 ferroptosis glutathione peroxidase 4 heme oxygenase 1 HT22 nuclear-factor E2-related factor 2 oxygen-glucose deprivation/reoxygenation injury stroke transferrin receptor 1
下载PDF
Atorvastatin Alleviates Myocardial Ischemia-Reperfusion Injury via miR-26a-5p/FOXO1
8
作者 Jinlan Duan Tong Zhang +3 位作者 Ying Zhu Bingtuan Lu Qi Zheng Ninghui Mu 《Journal of Biosciences and Medicines》 CAS 2023年第2期215-231,共17页
Purpose: Ischemia-reperfusion (I/R) injury exacerbates myocardial cell death (including apoptosis and necrosis), leading to complications such as arrhythmias, myocardial stenosis, microvascular obstruction and heart f... Purpose: Ischemia-reperfusion (I/R) injury exacerbates myocardial cell death (including apoptosis and necrosis), leading to complications such as arrhythmias, myocardial stenosis, microvascular obstruction and heart failure, and it is particularly important to seek new strategies to mitigate reperfusion injury. In this paper, we will investigate whether atorvastatin can alleviate myocardial ischemia-reperfusion injury and verify its molecular mechanism. Methods: We successfully constructed a hypoxia-reperfusion (H/R) H9c2 cell model and transfected miR-26a-5p mimic, miR-26a-5p inhibitor and its negative control NC-mimic or NC-inhibitor into H9c2 cells using a transfection kit. The expression of miR-26a-5p and FOXO1 were detected by RT-qPCR assay, the expression of related proteins by Western blot assay, the cell viability of H9c2 cells by CCK-8 assay, the apoptosis rate of H9c2 cells by flow cytometry, the CK and LDH activity in cells by CK and LDH assay kits. The targeting relationship between miR-26a-5p and FOXO1 was verified by dual luciferase reporter gene assay. Results: MiR-26a-5p expression was decreased in H/R-induced cells and FOXO1 expression was increased in H/R-induced cells. Atorvastatin alleviated H/R injury in cardiomyocytes and was most effective at a concentration of 1 μM. Atorvastatin alleviated H/R injury in cardiomyocytes by upregulating miR-26a-5p expression, miR-26a-5p and FOXO1 were negatively regulated by targeting. Conclusion: Atorvastatin can alleviate H/R injury in cardiomyocytes by regulating miR-26a-5p/FOXO1. 展开更多
关键词 Myocardial ischemia-reperfusion injury ATORVASTATIN mir-26a-5p FOXO1
下载PDF
Selective ischemic-hemisphere targeting Ginkgolide B liposomes with improved solubility and therapeutic efficacy for cerebral ischemia-reperfusion injury 被引量:1
9
作者 Yang Li Miaomiao Zhang +5 位作者 Shiyi Li Longlong Zhang Jisu Kim Qiujun Qiu Weigen Lu Jianxin Wang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第2期76-93,共18页
Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the pre... Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the presence of the blood-brain barrier(BBB),which affects the intracerebral delivery of drugs.Ginkgolide B(GB),a major bioactive component in commercially available products of Ginkgo biloba,has been shown significance in CI/RI treatment by regulating inflammatory pathways,oxidative damage,and metabolic disturbance,and seems to be a candidate for stroke recovery.However,limited by its poor hydrophilicity and lipophilicity,the development of GB preparations with good solubility,stability,and the ability to cross the BBB remains a challenge.Herein,we propose a combinatorial strategy by conjugating GB with highly lipophilic docosahexaenoic acid(DHA)to obtain a covalent complex GB-DHA,which can not only enhance the pharmacological effect of GB,but can also be encapsulated in liposomes stably.The amount of finally constructed Lipo@GB-DHA targeting to ischemic hemisphere was validated 2.2 times that of free solution in middle cerebral artery occlusion(MCAO)rats.Compared to the marketed ginkgolide injection,Lipo@GB-DHA significantly reduced infarct volume with better neurobehavioral recovery in MCAO rats after being intravenously administered both at 2 h and 6 h post-reperfusion.Low levels of reactive oxygen species(ROS)and high neuron survival in vitro was maintained via Lipo@GB-DHA treatment,while microglia in the ischemic brain were polarized from the pro-inflammatory M1 phenotype to the tissue-repairing M2 phenotype,which modulate neuroinflammatory and angiogenesis.In addition,Lipo@GB-DHA inhibited neuronal apoptosis via regulating the apoptotic pathway and maintained homeostasis by activating the autophagy pathway.Thus,transforming GB into a lipophilic complex and loading it into liposomes provides a promising nanomedicine strategy with excellent CI/RI therapeutic efficacy and industrialization prospects. 展开更多
关键词 Ginkgolide B Cerebral ischemia reperfusion injury(CI/RI) Docosahexaenoic acid Liposomes Brain targeting MICROGLIA
下载PDF
A molecular probe carrying anti-tropomyosin 4 for early diagnosis of cerebral ischemia/reperfusion injury
10
作者 Teng-Fei Yu Kun Wang +5 位作者 Lu Yin Wen-Zhe Li Chuan-Ping Li Wei Zhang Jie Tian Wen He 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1321-1324,共4页
In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cere... In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cerebral ischemia/reperfusion injury and observed microvascular changes in the brain using photoacoustic imaging with ultrasonography.At each measured time point,the total photoacoustic signal was significantly higher on the affected side than on the healthy side.Twelve hours after reperfusion,cerebral perfusion on the affected side increased,cerebrovascular injury worsened,and anti-tropomyosin 4 expression increased.Twenty-four hours after reperfusion and later,perfusion on the affected side declined slowly and stabilized after 1 week;brain injury was also alleviated.Histopathological and immunohistochemical examinations confirmed the brain injury tissue changes.The nanoshell molecular probe carrying anti-tropomyosin 4 has potential for use in early diagnosis of cerebral ischemia/reperfusion injury and evaluating its progression. 展开更多
关键词 cerebral ischemia/reperfusion injury diagnosis dynamic monitoring ischemic stroke middle cerebral artery occlusion molecular probe NANOSHELLS photoacoustic imaging tropomyosin 4 ULTRASOUND
下载PDF
Eph receptor A4 regulates motor neuron ferroptosis in spinal cord ischemia/reperfusion injury in rats
11
作者 Yan Dong Chunyu Ai +5 位作者 Ying Chen Zaili Zhang Dong Zhang Sidan Liu Xiangyi Tong Hong Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2219-2228,共10页
Previous studies have shown that the receptor tyrosine kinase Eph receptor A4(EphA4) is abundantly expressed in the nervous system. The EphA4 signaling pathway plays an important role in regulating motor neuron ferrop... Previous studies have shown that the receptor tyrosine kinase Eph receptor A4(EphA4) is abundantly expressed in the nervous system. The EphA4 signaling pathway plays an important role in regulating motor neuron ferroptosis in motor neuron disease. To investigate whether EphA4 signaling is involved in ferroptosis in spinal cord ischemia/reperfusion injury, in this study we established a rat model of spinal cord ischemia/reperfusion injury by clamping the left carotid artery and the left subclavian artery. We found that spinal cord ischemia/reperfusion injury increased EphA4 expression in the neurons of anterior horn, markedly worsened ferroptosis-related indicators, substantially increased the number of mitochondria exhibiting features consistent with ferroptosis, promoted deterioration of motor nerve function, increased the permeability of the blood-spinal cord barrier, and increased the rate of motor neuron death. Inhibition of EphA4 largely rescued these effects. However, intrathecal administration of the ferroptosis inducer Erastin counteracted the beneficial effects conferred by treatment with the EphA4 inhibitor. Mass spectrometry and a PubMed search were performed to identify proteins that interact with EphA4, with the most notable being Beclin1 and Erk1/2. Our results showed that inhibition of EphA4 expression reduced binding to Beclin1, markedly reduced p-Beclin1, and reduced Beclin1-XCT complex formation. Inhibition of EphA4 also reduced binding to p-Erk1/2 and markedly decreased the expression of c-Myc, transferrin receptor 1, and p-Erk1/2. Additionally, we observed co-localization of EphA4 and p-Beclin1 and of EphA4 and p-ERK1/2 in neurons in the anterior horn. In conclusion, EphA4 participates in regulating ferroptosis of spinal motor neurons in the anterior horn in spinal cord ischemia/reperfusion injury by promoting formation of the Beclin1-XCT complex and activating the Erk1/2/c-Myc/transferrin receptor 1 axis. 展开更多
关键词 BECLIN1 C-MYC EphA4 ERK1/2 ferroptosis motor neuron P-ERK1/2 RAT spinal cord ischemia/reperfusion injury transferrin receptor 1
下载PDF
Fish oil alleviates liver injury induced by intestinal ischemia/reperfusion via AMPK/SIRT-1/autophagy pathway 被引量:9
12
作者 Hui-rong Jing Fu-wen Luo +2 位作者 Xing-ming Liu Xiao-Feng Tian Yun Zhou 《World Journal of Gastroenterology》 SCIE CAS 2018年第7期833-843,共11页
AIM To evaluate whether fish oil(FO) can protect liver injury induced by intestinal ischemia/reperfusion(I/R) via the AMPK/SIRT-1/autophagy pathway.METHODS Ischemia in wistar rats was induced by superior mesenteric ar... AIM To evaluate whether fish oil(FO) can protect liver injury induced by intestinal ischemia/reperfusion(I/R) via the AMPK/SIRT-1/autophagy pathway.METHODS Ischemia in wistar rats was induced by superior mesenteric artery occlusion for 60 min and reperfusion for 240 min. One milliliter per day of FO emulsion or normal saline was administered by intraperitoneal injection for 5 consecutive days to each animal. Animals were sacrificed at the end of reperfusion. Blood andtissue samples were collected for analyses. AMPK, SIRT-1, and Beclin-1 expression was determined in lipopolysaccharide(LPS)-stimulated HepG2 cells with or without FO emulsion treatment.RESULTS Intestinal I/R induced significant liver morphological changes and increased serum alanine aminotransferase and aspartate aminotransferase levels. Expression of p-AMPK/AMPK, SIRT-1, and autophagy markers was decreased whereas tumor necrosis factor-α(TNF-α) and malonaldehyde(MDA) were increased. FO emulsion blocked the changes of the above indicators effectively. Besides, in LPS-stimulated HepG2 cells, small interfering RNA(siRNA) targeting AMPK impaired the FO induced increase of p-AMPK, SIRT-1, and Beclin-1 and decrease of TNF-α and MDA. SIRT-1 siRNA impaired the increase of SIRT-1 and Beclin-1 and the decrease of TNF-α and MDA.CONCLUSION Our study indicates that FO may protect the liver against intestinal I/R induced injury through the AMPK/SIRT-1/autophagy pathway. 展开更多
关键词 FISH oil AMPK/SirT1/autophagy liver injury INTESTINAL ischemia/reperfusion
下载PDF
Heat shock pretreatment improves stem cell repair following ischemia-reperfusion injury via autophagy 被引量:20
13
作者 Peng-Fei Qiao Lei Yao +2 位作者 Xin-Chen Zhang Guo-Dong Li De-Quan Wu 《World Journal of Gastroenterology》 SCIE CAS 2015年第45期12822-12834,共13页
AIM: To investigate whether heat shock pretreatment(HSP) improves mesenchymal stem cell(MSC) repair via autophagy following hepatic ischemia-reperfusion injury(HIRI).METHODS: Apoptosis of MSCs was induced by 250 m M h... AIM: To investigate whether heat shock pretreatment(HSP) improves mesenchymal stem cell(MSC) repair via autophagy following hepatic ischemia-reperfusion injury(HIRI).METHODS: Apoptosis of MSCs was induced by 250 m M hydrogen peroxide(H2O2) for 6 h. HSP was carried out using a 42 ℃ water bath for 1, 2 or 3 h. Apoptosis of MSCs was analyzed by flow cytometry, and Western blot was used to detect Bcl-2, Bax and cytochrome C expression. Autophagy of MSCs was analyzed by flow cytometry and transmission electron microscopy, and the expression of beclin Ⅰ?and LC3-Ⅱ was detected by Western blot. MSCs were labeled in vivo with the fluorescent dye, CM-Dil, and subsequently transplanted into the portal veins of rats that had undergone HIRI. Liver levels of proliferating cell nuclear antigen(PCNA) were quantified by fluorescent microscopy. Serum aminotransferase activity and the extent of HIRI were also assessed at each time point.RESULTS: HSP for 2 h reduced apoptosis of MSCs induced by H2O2 as seen by a decrease in apoptotic rate, a decrease in Bax and cytochrome C expression and an increase in Bcl-2 expression(P < 0.001). In addition, HSP for 2 h induced autophagy of MSCs exposed to H2O2 as shown by an increase in acidic vesicular organelle-positive cells, beclin 1 and LC3-Ⅱ expression, and autophagosome formation(P < 0.05). Treatment with 3-methyladenine attenuated HSPinduced autophagy and abolished the protective effects of HSP on the apoptosis of MSCs. Rapamycin failed to have additional effects on either autophagy or apoptosis compared with HSP alone. The phosphorylation of p38 MAPK was significantly elevated and the phosphorylation of m TOR was downregulated in heat shock pretreated MSCs. Treatment with the p38 MAPK inhibitor, SB203580, reduced HSP-induced autophagy in MSCs. In vivo studies showed that the transplantation of HSP-MSCs resulted in lower serum aminotransferase levels, lower Suzuki scores, improved histopathology and an increase in PCNA-positive cells(P < 0.05).CONCLUSION: HSP effectively induces autophagy following exposure to H2O2 via the p38MAPK/m TOR pathway, which leads to enhanced MSC survival and improved MSC repair following HIRI in rats. 展开更多
关键词 HEPATIC ischemia-reperfusion injury Heat shock pre
下载PDF
Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury:mechanisms of brain tissue repair 被引量:23
14
作者 Zhen-qiang Zhang Jun-ying Song +1 位作者 Ya-quan Jia Yun-ke Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第3期435-440,共6页
Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury,but the underlying mechanisms remain unclear.In this study,rats were intragastrically given Buyanghuanwu decoction,15 m L/k... Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury,but the underlying mechanisms remain unclear.In this study,rats were intragastrically given Buyanghuanwu decoction,15 m L/kg,for 3 days.A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion.In rats administered Buyanghuanwu decoction,infarct volume was reduced,serum vascular endothelial growth factor and integrin αvβ3 levels were increased,and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals.These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor(administered through the lateral ventricle for 7 consecutive days).These data suggest that Buyanghuanwu decoction promotes angiogenesis,improves cerebral circulation,and enhances brain tissue repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration Buyanghuanwu decoction cerebral ischemia/reperfusion injury ischemic cerebrovascular disease integrin αvβ3 vascular endothelial growth factor angiogenesis CD34 neural regeneration
下载PDF
miR-30b inhibits autophagy to alleviate hepatic ischemiareperfusion injury via decreasing the Atg12-Atg5 conjugate 被引量:21
15
作者 Shi-Peng Li Jin-Dan He +5 位作者 Zhen Wang Yao Yu Shu-Yu Fu Hai-Ming Zhang Jian-Jun Zhang Zhong-Yang Shen 《World Journal of Gastroenterology》 SCIE CAS 2016年第18期4501-4514,共14页
AIM: To explore the role and potential mechanism of miR-30 b regulation of autophagy in hepatic ischemiareperfusion injury(IRI).METHODS: An animal model of hepatic IRI was generated in C57BL/6 mice. For in vitro studi... AIM: To explore the role and potential mechanism of miR-30 b regulation of autophagy in hepatic ischemiareperfusion injury(IRI).METHODS: An animal model of hepatic IRI was generated in C57BL/6 mice. For in vitro studies, AML12 cells were immersed in mineral oil for 1 h and then cultured in complete Dulbecco's Modified Eagle's Medium(DMEM)/F12 to simulate IRI. Mice and cells were transfected with miR-30 b agomir/mimics or antagomir/inhibitor to examine the effect of miR-30 b on autophagy to promote hepatic IRI. The expression of miR-30 b was measured by real-time polymerase chain reaction. Apoptotic cells were detected by terminal uridine nickend labeling(TUNEL) staining, and cell viability was detected by methylthiazole tetrazolium assay. The expression of light chain 3, autophagy-related gene(Atg)12, Atg5, P62, and caspase-3 were detected by western blotting analysis.RESULTS: miR-30 b levels were significantly downregulated after hepatic IRI, and the numbers of autophagosomes were increased in response to IRI both in vivo and in vitro. These findings demonstrate that low levels of miR-30 b could promote hepatic IRI. Furthermore, we found that miR-30 b interacted with Atg12-Atg5 conjugate by binding to Atg12. Overexpression of miR-30 b diminished Atg12 and Atg12-Atg5 conjugate levels, which promoted autophagy in response to IR. In contrast, downregulation of miR-30 b was associated with increased Atg12-Atg5 conjugate levels and increased autophagy.CONCLUSION: miR-30 b inhibited autophagy to alleviate hepatic ischemia-reperfusion injury via decreasing the Atg12-Atg5 conjugate. 展开更多
关键词 mir-30b AUTOPHAGY Atg12-Atg5 CONJUGATE HEPATIC ischemia-reperfusion injury
下载PDF
Role of sirtuins in ischemia-reperfusion injury 被引量:8
16
作者 Eirini Pantazi Mohamed Amine Zaouali +3 位作者 Mohamed Bejaoui Emma Folch-Puy Hassen Ben Abdennebi Joan Roselló-Catafau 《World Journal of Gastroenterology》 SCIE CAS 2013年第43期7594-7602,共9页
Ischemia-reperfusion injury(IRI)remains an unresolved and complicated situation in clinical practice,especially in the case of organ transplantation.Several factors contribute to its complexity;the depletion of energy... Ischemia-reperfusion injury(IRI)remains an unresolved and complicated situation in clinical practice,especially in the case of organ transplantation.Several factors contribute to its complexity;the depletion of energy during ischemia and the induction of oxidative stress during reperfusion initiate a cascade of pathways that lead to cell death and finally to severe organ injury.Recently,the sirtuin family of nicotinamide adenine dinucleotide-dependent deacetylases has gained increasing attention from researchers,due to their involvement in the modulation of a wide variety of cellular functions.There are seven mammalian sirtuins and,among them,the nuclear/cytoplasmic sirtuin 1(SIRT1)and the mitochondrial sirtuin 3(SIRT3)are ubiquitously expressed in many tissue types.Sirtuins are known to play major roles in protecting against cellular stress and in controlling metabolic pathways,which are key processes during IRI.In this review,we mainly focus on SIRT1 and SIRT3 and examine their role in modulating pathways against energy depletion during ischemia and their involvement in oxidative stress,apoptosis,microcirculatory stress and inflammation during reperfusion.We present evidence of the beneficial effects of sirtuins against IRI and emphasize the importance of developing new strategies by enhancing their action. 展开更多
关键词 SirTUIN 1 SirTUIN 3 ischemia-reperfusion injury OXIDATIVE stress APOPTOSIS
下载PDF
Recombinant adenovirus vector Ad-hIL-10 protects grafts from cold ischemia-reperfusion injury following orthotopic liver transplantation in rats 被引量:11
17
作者 Si, Zhong-Zhou Li, Jie-Qun +3 位作者 Qi, Hai-Zhi He, Zhi-Jun Hu, Wei Li, Yi-Ning 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2010年第2期144-148,共5页
BACKGROUND: Interleukin 10 (IL-10), a Th2 type cytokine, modulates inflammatory responses by inhibiting the production of proinflammatory cytokines. This study was designed to investigate the protective effects of ade... BACKGROUND: Interleukin 10 (IL-10), a Th2 type cytokine, modulates inflammatory responses by inhibiting the production of proinflammatory cytokines. This study was designed to investigate the protective effects of adenovirus-mediated human IL-10 (Ad-hIL-10) gene transfer on protecting grafts from cold ischemia-reperfusion injury following orthotopic liver transplantation in rats. METHODS: Adenoviruses encoding hIL-10 or beta-galactosidase (Ad-lacZ) were injected via the superior mesenteric vein into prospective donor animals. The donor liver was harvested 48 hours after transduction, and stored for 12 hours at 4 degrees C in lactated Ringer's solution prior to transplantation. The rats were divided into saline, Ad-lacZ, and Ad-hIL-10 groups. Liver function test, histopathological examination, reverse transcriptase-polymerase chain reaction (RT-PCR), and Western blotting were performed at 24 hours after transplantation in the three groups. RESULTS: Liver function (ALT and AST) was significantly improved, and the Suzuki score was significantly decreased in the Ad-hIL-10 group. The levels of hepatic TNF-alpha, MIP-2, ICAM-1 mRNA, and NF-kappa B protein in the Ad-hIL-10 group were significantly decreased. The expression of hIL-10 mRNA was detected by RT-PCR in Ad-hIL-10-treated grafts but not in controls treated with saline or Ad-lacZ. CONCLUSIONS: Donor pretreatment with Ad-hIL-10 down-regulates the expression of proinflammatory cytokines TNF-alpha, MIP-2, and ICAM-1 mRNA. hIL-10 protects against hepatic cold ischemia-reperfusion injury, at least in part, by suppressing NF-kappa B activation and subsequent expression of proinflammatory mediators. (Hepatobiliary Pancreat Dis Int 2010; 9: 144-148) 展开更多
关键词 adenovirus vector interleukin 10 ischemia-reperfusion injury gene transfer
下载PDF
Neuronal effects of SP600125 pretreatment in a rat model of cerebral ischemia/reperfusion injury Inhibited down-regulation of DNA repair protein 被引量:1
18
作者 Ning Wang Rongliang Xue +4 位作者 Fengzhen Yao Jiaxuan He Jianrui Lu Pengbo Zhang Gang Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第12期1055-1061,共7页
BACKGROUND: Recent studies have shown that the selective inhibitor of c-Jun N-terminal kinases (JNKs) signaling pathway, SP600125, exhibits neuronal protective effects in a rat model of brain ischemia/reperfusion. ... BACKGROUND: Recent studies have shown that the selective inhibitor of c-Jun N-terminal kinases (JNKs) signaling pathway, SP600125, exhibits neuronal protective effects in a rat model of brain ischemia/reperfusion. OBJECTIVE: To determine the mechanisms of neuroprotective effects of SP600125 in a rat model of brain ischemia/reperfusion, and determine the role of the JNK signaling pathway in SP600125-induced effects. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Animal Experiment Center, Medical School of Xi'an Jiaotong University from June 2007 to September 2008. MATERIALS: SP600125 was provided by Biosource, USA; rabbit anti-phospho-JNK (Thr183/Tyr185) polyclonal antibody from Cell Signaling Technology, USA; rabbit anti-X-ray repair cross-complementing protein 1 (XRCC1) and anti-Ku70 polyclonal antibodies from Santa Cruz Biotechnology, USA; and TUNEL kit from Beijing Huamei Biology, China. METHODS: A total of 108 male, 4-month-old, Sprague Dawley rats were randomly assigned to three groups, with 36 rats per group. The sham operation group and ischemia/reperfusion group (I/R group) were intracerebroventricularly injected with 10 μL 1% DMSO. The SP600125-treated group (pre-SP group) was given 10 μL SP600125 (3 μg/μL). Thirty minutes later, brain ischemia was induced in the I/R and pre-SP groups using the four-vessel occlusion method. Specifically, whole brain ischemia was induced for 6 minutes, and the clips were released to restore carotid artery blood flow. Rats from each group were observed at 2, 6, 12, 24, 48, and 72 hours, with 6 rats for each time point. The sham operation group was treated with the same surgical exposure procedures, with exception of occlusion of the carotid artery. MAIN OUTCOME MEASURES: Hematoxylin-eosin staining was used to observe neuronal survival in the hippocampal CA1 region, TUNEL was used to detect apoptosis in the hippocampal CA1 region, and immunohistochemistry was used to detect expression of phospho-JNK, XRCC1, and Ku70. RESULTS: Following brain ischemia/reperfusion, neuronal survival significantly decreased, and the number of apoptotic cells significantly increased (P 〈 0.01). Compared with the I/R group, neuronal survival significantly increased in the pre-SP group, and the number of apoptotic cells significantly decreased (P 〈 0.01). Expression of phospho-JNK increased, and XRCC1 and Ku70 significantly decreased (P 〈 0.05) following ischemia/reperfusion. Compared with the I/R group, expression of phospho-JNK decreased, and XRCC1 and Ku70 significantly increased in the pre-SP group (P 〈 0.05). Correlation analysis revealed an inverse correlation between phospho-JNK gray value and XRCC1 and Ku70 gray values in the hippocampal CA1 region (r = -0.983, -0.953, P 〈 0.01). CONCLUSION: SP600125 treatment decreased apoptosis induced by global brain ischemia/reperfusion in the rat hippocampal CA1 region. Results suggested that the neuroprotective effects were due to inhibited phosphorylation of JNK and reduced down-regulation of XRCC1 and Ku70. 展开更多
关键词 ischemia/reperfusion injury apoptosis c-Jun N-terminal kinases DNA repair protein X-ray repair cross-complementing protein 1 KU70
下载PDF
Anti-apoptotic effects of aspirin following cerebral ischemia-reperfusion injury in rats 被引量:4
19
作者 Liying Qiu Bin Du Ying Li Hongbin Fan Zhiyong Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第9期979-984,共6页
BACKGROUND:The pharmacological effects of aspirin on apoptosis are complex.The underlying mechanisms have not been properly defined.OBJECTIVE:To observe the effect of different doses of aspirin on brain cell apoptosis... BACKGROUND:The pharmacological effects of aspirin on apoptosis are complex.The underlying mechanisms have not been properly defined.OBJECTIVE:To observe the effect of different doses of aspirin on brain cell apoptosis following focal cerebral ischemia-reperfusion injury(CIRI) in rats.DESING,TIME AND SETTING:A randomized,controlled,animal experiment,performed at the School of Medicine and Pharmaceutics,Jiangnan University between June and October 2006.MATERIALS:Twenty-six male,adult,Sprague Dawley rats(grade II),weighing 240-290 g,were obtained from Shanghai Experimental Animal Center,Chinese Academy of Sciences.Aspirin was provided by Sigma(USA).METHODS:The rats were randomly divided into four groups:sham-operation(SO),CIRI + vehicle,CIRI + aspirin(6 mg/kg),and CIRI + aspirin(60 mg/kg).Rats in the lesion groups were intragastrically administrated saline,aspirin(6 mg/kg),or aspirin(60 mg/kg),respectively.MAIN OUTCOME MEASURES:The number of pyramidal neurons with normal appearance in the cerebral cortex at 2-4 mm from the midline;apoptotic cell death as measured by TUNEL;Bcl-2 and Bax protein localization was determined by immunohistochemistry;malondialdehyde(MDA) and super oxidation(SOD) content were determined by biochemistry method;adenosine triphosphate(ATP) content measured by capillary electrophoresis.RESULTS:Following CIRI,the following parameters were altered compared with sham-operated animals:the number of neurons with normal appearance was significantly reduced in the cerebral cortex;the number of apoptotic cells increased;Bax protein expression was enhanced;and the ratio between Bcl-2 and Bax decreased.In addition,MDA content increased significantly,whereas ATP content decreased(P < 0.01).Aspirin ameliorated the loss of healthy pyramidal neurons.Both 6 and 60 mg/kg aspirin increased the ratio between Bcl-2 and Bax,with no significant difference between the treatment groups.In addition,60 mg/kg aspirin decreased MDA content and increased ATP levels.However,6 mg/kg aspirin did not have the same effect.CONCLUSION:Aspirin reduced the number of apoptotic cells following CIRI.These results suggest that the neuroprotective mechanism of aspirin could be related to elevated Bcl-2 protein levels or decreased Bax protein expression.The increase in the ratio of Bcl-2 to Bax appears to be a common anti-apoptotic mechanism of aspirin. 展开更多
关键词 脑损伤 脑缺血 细胞凋亡 阿司匹林
下载PDF
Flow cytometric analysis of circulating microvesicles derived from myocardial ischemic preconditioning and cardioprotection of ischemia/reperfusion injury in rats 被引量:3
20
作者 Miao LIU Yi-lu WANG +10 位作者 Man SHANG Yao WANG Qi ZHANG Shao-xun WANG Su WEI Kun-wei ZHANG Chao LIU Yan-na WU Ming-lin LIU Jun-qiu SONG Yan-xia LIU 《中国应用生理学杂志》 CAS CSCD 2015年第6期524-531,共8页
Objective: To establish a flow cytometric method to detect the alteration of phenotypes and concentration of circulating microvesicles(MVs) from myocardial ischemic preconditioning(IPC) treated rats(IPC-MVs), and to i... Objective: To establish a flow cytometric method to detect the alteration of phenotypes and concentration of circulating microvesicles(MVs) from myocardial ischemic preconditioning(IPC) treated rats(IPC-MVs), and to investigate the effects of IPC-MVs on ischemia/reperfusion(I/R) injury in rats. Methods: Myocardial IPC was elicited by three cycles of 5-min ischemia and 5-min reperfusion of the left anterior descending(LAD) coronary artery. Platelet-free plasma(PFP) was isolated through two steps of centrifugation at room temperature from the peripheral blood, and IPC-MVs were isolated by ultracentrifugation from PFP. PFP was incubated with anti-CD61, anti-CD144, anti-CD45 and anti-Erythroid Cells, and added 1, 2 μm latex beads to calibrate and absolutely count by flow cytometry. For functional research, I/R injury was induced by 30-min ischemia and 120-min reperfusion of LAD. IPC-MVs 7 mg/kg were infused via the femoral vein in myocardial I/R injured rats. Mean arterial blood pressure(MAP), heart rate(HR) and ST-segment of electrocardiogram(ECG) were monitored throughout the experiment. Changes of myocardial morphology were observed after hematoxylin-eosin(HE) staining. The activity of plasma lactate dehydrogenase(LDH) was tested by Microplate Reader. Myocardial infarct size was measured by TTC staining. Results: Total IPC-MVs and different phenotypes, including platelet-derived MVs(PMVs), endothelial cell-derived MVs(EMVs), leucocyte-derived MVs(LMVs) and erythrocyte-derived MVs(RMVs) were all isolated which were identified membrane vesicles(<1 μm) with corresponding antibody positive. The numbers of PMVs, EMVs and RMVs were significantly increased in circulation of IPC treated rats(P<0.05, respectively). In addition, at the end of 120-min reperfusion in I/R injured rats, IPC-MVs markedly increased HR(P<0.01), decreased ST-segment and LDH activity(P<0.05, P<0.01). The damage of myocardium was obviously alleviated and myocardial infarct size was significantly lowered after IPC-MVs treatment(P<0.01). Conclusion: The method of flow cytometry was successfully established to detect the phenotypes and concentration alteration of IPC-MVs, including PMVs, EMVs, LMVs and RMVs. Furthermore, circulating IPC-MVs protected myocardium against I/R injury in rats. 展开更多
关键词 缺血/再灌注损伤 流式细胞仪分析 心肌梗死 缺血预处理 保护作用 大鼠 循环 微泡
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部