The efficacy of stem cell therapy is substantially compromised due to low cell survival rate and poor local retention post-delivery. These issues drastically limit the application of stem cells for ischemic limb thera...The efficacy of stem cell therapy is substantially compromised due to low cell survival rate and poor local retention post-delivery. These issues drastically limit the application of stem cells for ischemic limb therapy, which requires effective blood perfusion and skeletal muscle regeneration. Herein, based on microfluidic technology, an integrated stem cell and cytokine co-delivery system designed for functional ischemic limb salvage was constructed by first incorporating the myogenic cytokine, fibroblast growth factor 19 (FGF19), into microspheres composed of methacrylate gelatin (GelMA). Then adipose-derived stem cells (ADSCs) were highly absorbed into the porous structure of the microspheres, overcoming the insufficient loading efficiency and activities by conventional encapsulation strategy. The fabricated ADSCs/FGF19@μsphere system demonstrated a uniform size of about 180 μm and a highly porous structure with pore sizes between 20 and 40 μm. The resultant system allowed high doses of ADSCs to be precisely engrafted in the lesion and to survive, and achieved sustained FGF19 release in the ischemic region to facilitate myoblast recruitment and differentiation and myofibrils growth. Furthermore, the combination of ADSCs and FGF19 exhibited a positive synergistic effect which substantially improved the therapeutic benefit of angiogenesis and myogenesis, both in vitro and in vivo. In summary, a stem cell and cytokine co-delivery system with the properties of easy preparation and minimal invasiveness was designed to ensure highly efficient cell delivery, sustained cytokine release, and ultimately realizes effective treatment of ischemic limb regeneration.展开更多
基金supported by the National Natural Science Foundation of China(grant number 8207021027)Shanghai Clinical Research Center for Interventional Medicine(grant number 19MC1910300)Shanghai Science and Technology Commission(grant numbers 19441906600,21S31904800).
文摘The efficacy of stem cell therapy is substantially compromised due to low cell survival rate and poor local retention post-delivery. These issues drastically limit the application of stem cells for ischemic limb therapy, which requires effective blood perfusion and skeletal muscle regeneration. Herein, based on microfluidic technology, an integrated stem cell and cytokine co-delivery system designed for functional ischemic limb salvage was constructed by first incorporating the myogenic cytokine, fibroblast growth factor 19 (FGF19), into microspheres composed of methacrylate gelatin (GelMA). Then adipose-derived stem cells (ADSCs) were highly absorbed into the porous structure of the microspheres, overcoming the insufficient loading efficiency and activities by conventional encapsulation strategy. The fabricated ADSCs/FGF19@μsphere system demonstrated a uniform size of about 180 μm and a highly porous structure with pore sizes between 20 and 40 μm. The resultant system allowed high doses of ADSCs to be precisely engrafted in the lesion and to survive, and achieved sustained FGF19 release in the ischemic region to facilitate myoblast recruitment and differentiation and myofibrils growth. Furthermore, the combination of ADSCs and FGF19 exhibited a positive synergistic effect which substantially improved the therapeutic benefit of angiogenesis and myogenesis, both in vitro and in vivo. In summary, a stem cell and cytokine co-delivery system with the properties of easy preparation and minimal invasiveness was designed to ensure highly efficient cell delivery, sustained cytokine release, and ultimately realizes effective treatment of ischemic limb regeneration.