期刊文献+
共找到5,991篇文章
< 1 2 250 >
每页显示 20 50 100
Hypoxic preconditioning stimulates angiogenesis in ischemic penumbra after acute cerebral infarction 被引量:32
1
作者 Sijie Li Yanbo Zhang +4 位作者 Guo Shao Mingfeng Yang Jingzhong Niu Guowei Lv Xunming Ji 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第31期2895-2903,共9页
Previous studies have demonstrated the protective effect of hypoxic preconditioning on acute cerebral infarction, but the mechanisms underlying this protection remain unclear. To investigate the protective mechanisms ... Previous studies have demonstrated the protective effect of hypoxic preconditioning on acute cerebral infarction, but the mechanisms underlying this protection remain unclear. To investigate the protective mechanisms of hypoxic preconditioning in relation to its effects on angiogenesis, we in- duced a photochemical model of cerebral infarction in an inbred line of mice (BALB/c). Mice were then exposed to hypoxic preconditioning 30 minutes prior to model establishment. Results showed significantly increased vascular endothelial growth factor and CD31 expression in the ischemic penumbra at 24 and 72 hours post infarction, mainly in neurons and vascular endothelial cells. Hypoxic preconditioning increased vascular endothelial growth factor and CD31 expression in the ischemic penumbra and the expression of vascular endothelial growth factor was positively related to that of CD31. Moreover, hypoxic preconditioning reduced the infarct volume and improved neu- rological function in mice. These findings indicate that the protective role of hypoxic preconditioning in acute cerebral infarction may possibly be due to an increase in expression of vascular endothelial growth factor and CD31 in the ischemic penumbra, which promoted angiogenesis. 展开更多
关键词 neural regeneration brain injury hypoxic preconditioning acute cerebral infarction ischemicpenumbra vascular endothelial growth factor CD31 ANGIOGENESIS NEUROPROTECTION grants-supported paper NEUROREGENERATION
下载PDF
Concepts of hypoxic NO signaling in remote ischemic preconditioning 被引量:5
2
作者 Matthias Totzeck Ulrike Hendgen-Cotta Tienush Rassaf 《World Journal of Cardiology》 CAS 2015年第10期645-651,共7页
Acute coronary syndromes remain a leading single cause of death worldwide. Therapeutic strategies to treat cardiomyocyte threatening ischemia/reperfusion injury are urgently needed. Remote ischemic preconditioning(r I... Acute coronary syndromes remain a leading single cause of death worldwide. Therapeutic strategies to treat cardiomyocyte threatening ischemia/reperfusion injury are urgently needed. Remote ischemic preconditioning(r IPC) applied by brief ischemic episodes to heartdistant organs has been tested in several clinical studies, and the major body of evidence points to beneficial effects of r IPC for patients. The underlying signaling, however, remains incompletely understood. This relates particularly to the mechanism by which the protective signal is transferred from the remote site to the target organ. Many pathways have been forwarded but none can explain the protective effects completely. In light of recent experimental studies, we here outline the current knowledge relating to the generation of the protective signal in the remote organ, the signal transfer to the target organ and the transduction of the transferred signal into cardioprotection. The majority of studies favors a humoral factor that activates cardiomyocyte downstream signaling- receptor-dependent and independently. Cellular targets include deleterious calcium(Ca2+) signaling, reactive oxygen species, mitochondrial function and structure, and cellular apoptosis and necrosis. Following an outline of the existing evidence, we will furthermore characterize the existing knowledge and discuss future perspectives with particular emphasis on the interaction between the recently discovered hypoxic nitrite-nitric oxide signaling in r IPC. This refers to the protective role of nitrite, which can be activated endogenously using r IPC and which then contributes to cardioprotection by rIPC. 展开更多
关键词 REMOTE ischemic preconditioning ischemia/ reperfus
下载PDF
The miR-9-5p/CXCL11 pathway is a key target of hydrogen sulfide-mediated inhibition of neuroinflammation in hypoxic ischemic brain injury 被引量:2
3
作者 Yijing Zhao Tong Li +6 位作者 Zige Jiang Chengcheng Gai Shuwen Yu Danqing Xin Tingting Li Dexiang Liu Zhen Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1084-1091,共8页
We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation r... We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury. 展开更多
关键词 chemokine(C-X-C motif)ligand 11 cystathionineβsynthase H2S hypoxic ischemic brain injury inflammation L-CYSTEINE lipopolysaccharide microglia miR-9-5p neuroprotection
下载PDF
Hypoxic/ischemic preconditioning attenuate PKCδ-medi-ated injury in patients and mice with cerebral infarction
4
作者 Weiwei Yang Shengli Xu +1 位作者 Liyong Zhang Zidong Wang 《Journal of Translational Neuroscience》 2021年第3期19-29,共11页
Objective:cerebral ischemic/hypox-ic preconditioning(I/HPC)is an endogenous strategy in which brief periods of sublethal ischemia/hypoxia render neural tissues resistant to subsequent ischemic/hypoxic damage.This phen... Objective:cerebral ischemic/hypox-ic preconditioning(I/HPC)is an endogenous strategy in which brief periods of sublethal ischemia/hypoxia render neural tissues resistant to subsequent ischemic/hypoxic damage.This phenomenon has been found in the brain,heart,liver,intestine,muscle,kidneys,and lung.How-ever,whether HPC has a protective effect on secondary cerebral ischemic injury or protein kinase Cδ(PKCδ)within ischemic patients and animal models is still un-clear.Methods:using a hypoxic preconditioned mouse model and a middle cerebral artery occlusion mouse mod-el,combined with 2,3,5-triphenyl tetrazolium chloride(TTC)staining,SDS-polyacrylamide gel electrophoresis(SDS-PAGE),and Western blot,we observed changes in infarction size,density,edema ratio,and changes in PKCδand membrane translocation within the ischemic cortex of the middle cerebral artery occlusion(MCAO)mice.Results:HPC can attenuate neurological deficits and cerebral ischemic injuries of mice following MCAO,including decreases in infarct size,edema ratio,densities of infarct area,and neuron loss.In addition,HPC inhib-its PKCδmembrane translocation in the penumbra of the MCAO-induced ischemic cortex.We found that admin-istration of PKCδ-specific inhibitor dV1-1 mimics the neuroprotective effects of HPC,and nonisoform-specif-ic activation of PKC can partially abolish HPC-induced neuroprotection.Ischemic preconditioning decreased the levels of PKCδin the serum of patients with cerebral in-farction and reduced the cerebral nerve damage caused by ischemia.Conclusion:hypoxic/ischemic precondi-tioning attenuates PKCδ-mediated injury in patients and mice.These findings enrich our understanding of the sig-nal transduction mechanism underlying cerebral HPC and provide clues to developing medicine against ischemia/hypoxia-induced cerebral injuries. 展开更多
关键词 hypoxic preconditioning(HPC) middle cerebral artery occlusion(MCAO) protein kinase C(PKC) PENUMBRA NEUROPROTECTION
下载PDF
Effect of Hypoxic Preconditioning on Neural Cell Apoptosis and Expression of Bcl-2 and Bax in Cerebral Ischemia-Reperfusion in Rats 被引量:10
5
作者 高晓群 常成 +2 位作者 段东晓 茹立强 殷光甫 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2006年第1期17-20,共4页
In order to investigate the protective effect of hypoxic preconditioning on the cerebral ischemia-reperfusion injury, the expression of Bcl-2 and Bax was detected by using immunohistochemical staining after 3 h cerebr... In order to investigate the protective effect of hypoxic preconditioning on the cerebral ischemia-reperfusion injury, the expression of Bcl-2 and Bax was detected by using immunohistochemical staining after 3 h cerebral ischemia followed by 1, 6, 12, 24 and 48 h reperfusion respectively in rats treated with or without hypoxic preconditioning before cerebral ischemia. In addition, the apoptosis of neural cells and the behavioral scores for neurological functions recovery were evaluated by TUNEL staining and "crawling method", respectively. Compared with control group (cerebral ischemia-reperfusion without hypoxic preconditioning), the expression of Bcl-2 was significantly increased, but that of Bax decreased in the hypoxic preconditioning group (cerebral ischemiareperfusion with hypoxie preconditioning), both P〈0.05. The pre-treatment with hypoxic preconditioning could reduce the apoptosis of neural cells and promote the neurological function recovery as compared to control group. It was suggested that hypoxic preconditioning may have protective effects on the cerebral ischemia-reperfusion injury by inhibiting the apoptosis of neural cells, increase the expression of Bcl-2 and decrease the expression of Bax. 展开更多
关键词 hypoxic preconditioning cerebral ischemia APOPTOSIS BCL-2 BAX
下载PDF
Hypoxic preconditioning reduces NLRP3 inflammasome expression and protects against cerebral ischemia/reperfusion injury 被引量:8
6
作者 Yi-Qiang Pang Jing Yang +2 位作者 Chun-Mei Jia Rui Zhang Qi Pang 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第2期395-400,共6页
Hypoxic preconditioning can protect against cerebral ischemia/reperfusion injury. However, the underlying mechanisms that mediate this effect are not completely clear. In this study, mice were pretreated with continuo... Hypoxic preconditioning can protect against cerebral ischemia/reperfusion injury. However, the underlying mechanisms that mediate this effect are not completely clear. In this study, mice were pretreated with continuous, intermittent hypoxic preconditioning;1 hour later, cerebral ischemia/reperfusion models were generated by middle cerebral artery occlusion and reperfusion. Compared with control mice, mice with cerebral ischemia/reperfusion injury showed increased Bederson neurological function scores, significantly increased cerebral infarction volume, obvious pathological damage to the hippocampus, significantly increased apoptosis;upregulated interleukin-1β, interleukin-6, and interleukin-8 levels in brain tissue;and increased expression levels of NOD-like receptor family pyrin domain containing 3(NLRP3), NLRP inflammasome-related protein caspase-1, and gasdermin D. However, hypoxic preconditioning significantly inhibited the above phenomena. Taken together, these data suggest that hypoxic preconditioning mitigates cerebral ischemia/reperfusion injury in mice by reducing NLRP3 inflammasome expression. This study was approved by the Medical Ethics Committee of the Fourth Hospital of Baotou, China(approval No. DWLL2019001) in November 2019. 展开更多
关键词 apoptosis CASPASE-1 cell death cerebral ischemia/reperfusion injury gasdermin D hippocampus hypoxic preconditioning NLRP3 inflammasome
下载PDF
Ischemic preconditioning induces chaperone hsp70 expression and inhibits protein aggregation in the CA1 neurons of rats 被引量:2
7
作者 葛鹏飞 罗天飞 +3 位作者 张纪周 陈大伟 栾永新 付双林 《Neuroscience Bulletin》 SCIE CAS CSCD 2008年第5期288-296,共9页
Objective To investigate the effect of ischemic preconditioning on chaperone hsp70 expression and protein aggregation in the CA1 neurons of rats, and to further explore its potential neuroprotective mechanism. Methods... Objective To investigate the effect of ischemic preconditioning on chaperone hsp70 expression and protein aggregation in the CA1 neurons of rats, and to further explore its potential neuroprotective mechanism. Methods Two-vesseloccluded transient global ischemia rat model was used. The rats were divided into sublethal 3-min ischemia group, lethal 10- min ischemia group and ischemic preconditioning group. Neuronal death in the CA1 region was observed by hematoxylineosin staining, and number of live neurons was assessed by cell counting under a light microscope. Immunochemistry and laser scanning confocal microscopy were used to observe the distribution of chaperone hsp70 in the CA1 neurons. Differential centrifuge was used to isolate cytosol, nucleus and protein aggregates fractions. Western blot was used to analyze the quantitative alterations of protein aggregates and inducible chaperone hsp70 in cellular fractions and in protein aggregates under different ischemic conditions. Results Histological examination showed that ischemic preconditioning significantly reduced delayed neuronal death in the hippocampus CA1 region (P 〈 0.01 vs 10-min ischemia group). Sublethal ischemic preconditioning induced chaperone hsp70 expression in the CA1 neurons after 24 h reperfusion following 10-min ischemia. Induced-hsp70 combined with the abnormal proteins produced during the secondary lethal 10-min ischemia and inhibited the formation of cytotoxic protein aggregates(P〈0.01 vs 10-min ischemia group).Conelusion Ischemic preconditioning induced chaperone hsp70 expression and inhibited protein aggregates formation in the CA1 neurons when suffered secondary lethal ischemia, which may protect neurons from death. 展开更多
关键词 ischemic preconditioning protein aggregation CHAPERONE HSP70
下载PDF
Hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect neurons from cardiac arrest-induced pyroptosis
8
作者 Xiahong Tang Nan Zheng +8 位作者 Qingming Lin Yan You Zheng Gong Yangping Zhuang Jiali Wu Yu Wang Hanlin Huang Jun Ke Feng Chen 《Neural Regeneration Research》 SCIE CAS 2025年第4期1103-1123,共21页
Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to impr... Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to improve migration and survival of bone marrow–derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest,but the specific mechanisms by which hypoxia-preconditioned bone marrow–derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown.To this end,we established an in vitro co-culture model of bone marrow–derived mesenchymal stem cells and oxygen–glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis,possibly through inhibition of the MAPK and nuclear factor κB pathways.Subsequently,we transplanted hypoxia-preconditioned bone marrow–derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia.The results showed that hypoxia-preconditioned bone marrow–derived mesenchymal stem cells significantly reduced cardiac arrest–induced neuronal pyroptosis,oxidative stress,and mitochondrial damage,whereas knockdown of the liver isoform of phosphofructokinase in bone marrow–derived mesenchymal stem cells inhibited these effects.To conclude,hypoxia-preconditioned bone marrow–derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest,and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning. 展开更多
关键词 bone marrow–derived mesenchymal stem cells cardiac arrest cardiac resuscitation hypoxic preconditioning liver isoform of phosphofructokinase mitochondria NEUROINFLAMMATION oxidative stress PYROPTOSIS reactive oxygen species
下载PDF
Impact of hypoxic preconditioning on apoptosis and its possible mechanism in orthotopic liver autotransplantation in rats 被引量:26
9
作者 Jin, Cheng Zhang, Pei-Jian +5 位作者 Wu, Xiao-Min Zhou, Bin Li, Yong Liu, Xin-Yan Feng, Min Tao, Li-De 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2009年第1期40-45,共6页
BACKGROUND: Hepatocyte apoptosis is a severe form of cell death after hepatic ischemia-reperfusion injury (HIRI), and its relief is an important issue in liver transplantation. Hypoxic preconditioning (HP) is consider... BACKGROUND: Hepatocyte apoptosis is a severe form of cell death after hepatic ischemia-reperfusion injury (HIRI), and its relief is an important issue in liver transplantation. Hypoxic preconditioning (HP) is considered to have protective effects on HIRI. This study was designed to explore the impact of HP on apoptosis and its possible mechanism during orthotopic liver autotransplantation. METHODS: A modified orthotopic liver autotransplantation model was used to simulate HIRI. Sprague-Dawley rats were randomly divided into normal control, autotransplantation (AT) and HP groups. The HP group was subjected to an 8% oxygen atmosphere for 90 minutes before surgery. At 1, 6 and 24 hours after surgery, the rats were killed and their liver tissue was sampled to assess the expression of Bcl-2 protein. The samples were subjected to blood chemistry study, morphological study under a light or transmission electron microscope, and quantitative study of mitochondria. RESULTS: The serum levels of ALT and AST in the HP group were lower than those in the AT group at 1, 6 and 24 hours after orthotopic liver autotransplantation (P < 0.05). Bcl-2 protein expression was increased in the HP group at each measurement point (P < 0.05). Light microscopy showed that hepatic injury in the AT group was much more severe than in the HP group. Hepatocytes in the AT group showed typical apoptosis signs under a transmission electron microscope. The ultrastructural appearance of hepatocytes in the HP group was much better than in the AT group, and the area, perimeter and diameter of the mitochondria were smaller in the HP group than in the AT group (P < 0.05). CONCLUSIONS: Hepatocytes sense and respond to decreased tissue oxygenation. Stimulation by HP relieves apoptosis by upregulating expression of Bcl-2 protein and its protection of mitochondria after orthotopic liver autotransplantation. 展开更多
关键词 hypoxic preconditioning orthotopic liver autotransplantation Bcl-2 protein MITOCHONDRIA ischemia-reperfusion injury
下载PDF
Neuroprotective effect of ischemic preconditioning in focal cerebral infarction: relationship with upregulation of vascular endothelial growth factor 被引量:15
10
作者 Yong Liu Suiqiang Zhu +4 位作者 Yunfu Wang Jingquan Hu Lili Xu Li Ding Guangjian Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第11期1117-1121,共5页
Neuroprotection by ischemic preconditioning has been confirmed by many studies, but the precise mechanism remains unclear. In the present study, we performed cerebral ischemic pre- conditioning in rats by simulating a... Neuroprotection by ischemic preconditioning has been confirmed by many studies, but the precise mechanism remains unclear. In the present study, we performed cerebral ischemic pre- conditioning in rats by simulating a transient ischemic attack twice (each a 20-minute occlusion of the middle cerebral artery) before inducing focal cerebral infarction (2 hour occlusion-reper- fusion in the same artery). We also explored the mechanism underlying the neuroprotective effect of ischemic preconditioning. Seven days after ocdusion-reperfusion, tetrazolium chloride staining and immunohistochemistry revealed that the infarct volume was significantly smaller in the group that underwent preconditioning than in the model group. Furthermore, vascular endothelial growth factor immunoreactivity was considerably greater in the hippocampal CA3 region of preconditioned rats than model rats. Our results suggest that the protective effects of ischemic preconditioning on focal cerebral infarction are associated with upregulation of vascu- lar endothelial growth factor. 展开更多
关键词 nerve regeneration brain injury transient ischemic attack ischemic preconditioning ischemIA-REPERFUSION focal cerebral infarction infarct volume ratio vascular endothelial growthfactor PROTECTION mechanism neural regeneration
下载PDF
Ischemic preconditioning-induced hyperperfusion correlates with hepatoprotection after liver resection 被引量:12
11
作者 Oleg Heizmann Georgios Meimarakis +3 位作者 Andreas Volk Daniel Matz Daniel Oertli Rolf J Schauer 《World Journal of Gastroenterology》 SCIE CAS CSCD 2010年第15期1871-1878,共8页
AIM:To characterize the impact of the Pringle ma-neuver (PM) and ischemic preconditioning (IP) on total blood supply to the liver following hepatectomies. METHODS: Sixty one consecutive patients who un-derwent hepatic... AIM:To characterize the impact of the Pringle ma-neuver (PM) and ischemic preconditioning (IP) on total blood supply to the liver following hepatectomies. METHODS: Sixty one consecutive patients who un-derwent hepatic resection under in flow occlusion were randomized either to receive PM alone (n = 31) or IP (10 min of ischemia followed by 10 min of reperfusion) prior to PM (n = 30). Quantification of liver perfusion was measured by Doppler probes at the hepatic artery and portal vein at various time points after reperfusion of remnant livers. RESULTS: Occlusion times of 33 ± 12 min (mean ± SD) and 34 ± 14 min and the extent of resected liver tissue (2.7 segments) were similar in both groups. In controls (PM), on reperfusion of liver remnants for 15 min, portal perfusion markedly decreased by 29% while there was a slight increase of 8% in the arterial blood flow. In contrast, following IP + PM the portal vein flow remained unchanged during reperfusion and a significantly increased arterial blood flow (+56% vs baseline) was observed. In accordance with a better postischemic blood supply of the liver, hepatocellular injury, as measured by alanine aminotransferase (ALT) levels on day 1 was considerably lower in group B compared to group A (247 ± 210 U/I vs 550 ± 650 U/I, P < 0.05). Additionally, ALT levels were significantly correlated to the hepatic artery in flow.CONCLUSION: IP prevents postischemic flow reduction of the portal vein and simultaneously increases arterial perfusion, suggesting that improved hepatic macrocirculation is a protective mechanism following hepatectomy. 展开更多
关键词 ischemic preconditioning Reperfusion injury LIVER SURGERY Liver blood flow
下载PDF
Effects of ischemic preconditioning on cyclinD1 expression during early ischemic reperfusion in rats 被引量:21
12
作者 Fang-Gang Cai Jian-Sheng Xiao Qi-Fa Ye 《World Journal of Gastroenterology》 SCIE CAS CSCD 2006年第18期2936-2940,共5页
AIM: To observe the effect of ischemic preconditioning on cyclinD1 expression in rat liver cells during early ischemic reperfusion.METHODS: Fifty-four SD rats were randomly divided into ischemic preconditioning gro... AIM: To observe the effect of ischemic preconditioning on cyclinD1 expression in rat liver cells during early ischemic reperfusion.METHODS: Fifty-four SD rats were randomly divided into ischemic preconditioning group (IP), ischemia/ reperfusion group (IR) and sham operation group (SO). The IP and IR groups were further divided into four sub-groups (n = 6). Sham operation group (SO) served as the control group (n = 6). A model of partial liver ischemia/reperfusion was used, in which rats were subjected to liver ischemia for 60 min prior to reperfusion. The animals in the IP group underwent ischemic preconditioning twice for 5 min each time prior to the ischemia/reperfusion challenge. Alter 0, 1, 2, and 4 h of reperfusion, serum and liver tissue in each group were collected to detect the level of serum ALT, liver histopathology and expression of cyclinD1 mRNA and protein. Flow cytometry was used to detect cell cycle as the quantity indicator of cell regeneration. RESULTS: Compared with IR group, IP group showed a significantly lower ALT level in 1h to 4h sub-groups (P 〈 0.05). Proliferation index(PI) indicated by the S-phase and G2/M-phase ratio [(S+G2/M)/(G0/G1+S+G2/M)] was significantly increased in IP group at 0 and 1 h (26.44 ± 7.60% vs 18.56 ± 6.40%,41.87 ± 7.27% vs 20.25 ± 6.70%, P 〈 0.05). Meanwhile, cyclinD1 protein expression could be detected in IP group. But in IR group, cyclinD1 protein expression occurred 2 h alter reperfusion. The expression of cyclinD1 mRNA increased significantly in IP group at 0 and 1h (0.568 ± 0.112 vs 0.274 ± 0.069, 0.762 ± 0.164 vs 0.348 ± 0.093,P 〈 0.05).CONCLUSION: Ischemic preconditioning can protect liver cells against ischemia/reperfusion injury, which may be related to cell proliferation and expression of cyclinD1 during early ischemic reperfusion. 展开更多
关键词 LIVER ischemic preconditioning CYCLIND1 PROLIFERATION
下载PDF
Ischemic preconditioning ameliorates intestinal injury induced by ischemia-reperfusion in rats 被引量:6
13
作者 Yuan-Yuan Ji Zhi-Dong Wang +5 位作者 Shu-Feng Wang Bao-Tai Wang Zheng-An Yang Xiao-Rong Zhou Ni-Na Lei Wei-Na Yue 《World Journal of Gastroenterology》 SCIE CAS 2015年第26期8081-8088,共8页
AIM: To evaluate preventative effects of ischemic preconditioning(IP) in a rat model of intestinal injury induced by ischemia-reperfusion(IR).METHODS: Male Sprague-Dawley rats(250-300 g) were fasted for 24 h with free... AIM: To evaluate preventative effects of ischemic preconditioning(IP) in a rat model of intestinal injury induced by ischemia-reperfusion(IR).METHODS: Male Sprague-Dawley rats(250-300 g) were fasted for 24 h with free access to water prior to the operation.Eighteen rats were randomly divided into three experimental groups: S group(n = 6),rats were subjected to isolation of the superior mesenteric artery(SMA) for 40 min,then the abdomen was closed; IRgroup(n = 6),rats were subjected to clamping the SMA 40 min,and the abdomen was closed followed by a 4-h reperfusion; IP group(n = 6) rats underwent three cycles of 5 min ischemia and 5 min reperfusion,then clamping of the SMA for 40 min,then the abdomen was closed and a 4-h reperfusion followed.All animals were euthanized by barbiturate overdose(150 mg/kg pentobarbital sodium,i.v.) for tissue collection,and the SMA was isolated via median abdominal incision.Intestinal histologic injury was observed.Malondialdehyde(MDA),myeloperoxidase(MPO) and tumor necrosis factor(TNF)-a concentrations in intestinal tissue were measured.Intercellular adhesion molecule(ICAM)-1 and vascular cell adhesion molecule(VCAM)-1 expression,as well as nuclear factor(NF)-κB activity and expression in intestinal tissue were also determined.RESULTS: Compared with the IR group,IP reduced IR-induced histologic injury of the intestine in rats(2.00 ± 0.71 vs 3.60 ± 0.84,P < 0.05).IP significantly inhibited the increase in MDA content(5.6 ± 0.15 μmol/L vs 6.84 ± 0.18 μmol/L,P < 0.01),MPO activity(0.13 ± 0.01 U/L vs 0.24 ± 0.01 U/L,P < 0.01),and TNF-a levels(7.79 ± 2.35 pg/m L vs 10.87 ± 2.48 pg/m L,P < 0.05) in the intestinal tissue of rats.IP also markedly ameliorated the increase in ICAM-1(204.67 ± 53.27 vs 353.33 ± 45.19,P < 0.05) and VCAM-1(256.67 ± 58.59 vs 377.33 ± 41.42,P < 0.05) protein expression in the intestinal tissues.Additionally,IP remarkably decreased NF-κB activity(0.48 ± 0.16 vs 0.76 ± 0.22,P < 0.05) and protein expression(320.23 ± 38.16 vs 520.76 ± 40.53,P < 0.01) in rat intestinal tissue.CONCLUSION: IP may protect against IR-induced intestinal injury by attenuation of the neutrophilendothelial adhesion cascade via reducing ICAM-1 and VCAM-1 expression and TNF-a-induced NF-κB signaling pathway activity. 展开更多
关键词 INTERCELLULAR adhesion molecule ischemiareperfusion ischemic preconditioning Nuclear factor-κB Tumor NECROSIS FACTOR-A
下载PDF
Protective effects of remote ischemic preconditioning in rat hindlimb on ischemia- reperfusion injury 被引量:7
14
作者 Ying Zhang Xiangrong Liu +3 位作者 Feng Yan Lianqiu Min Xunming Ji Yumin Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第8期583-587,共5页
Three cycles of remote ischemic pre-conditioning induced by temporarily occluding the bilateral femoral arteries (10 minutes) prior to 10 minutes of reperfusion were given once a day for 3 days before the animal rec... Three cycles of remote ischemic pre-conditioning induced by temporarily occluding the bilateral femoral arteries (10 minutes) prior to 10 minutes of reperfusion were given once a day for 3 days before the animal received middle artery occlusion and reperfusion surgery. The results showed that brain infarct volume was significantly reduced after remote ischemic pre-conditioning. Scores in the forelimb placing test and the postural reflex test were significantly lower in rats having undergone remote ischemic pre-conditioning compared with those who did not receive remote ischemic pre-conditioning. Thus, neurological function was better in rats having undergone remote ischemic pre-conditioning compared with those who did not receive remote ischemic pre-conditioning. These results indicate that remote ischemic pre-conditioning in rat hindlimb exerts protective effects in ischemia-reperfusion injury. 展开更多
关键词 cerebral ischemia-reperfusion remote ischemic preconditioning STROKE neural regeneration
下载PDF
Outcomes and mechanisms of ischemic preconditioning in liver transplantation 被引量:7
15
作者 Yan, Sheng Jin, Li-Ming +3 位作者 Liu, Yuan-Xing Zhou, Lin Xie, Hai-Yang Zheng, Shu-Sen 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2010年第4期346-354,共9页
BACKGROUND: Liver transplantation is so far the most effective therapeutic modality for end-stage liver diseases, but ischemia/reperfusion (I/R) injury represents a critical barrier to liver transplantation. Primary g... BACKGROUND: Liver transplantation is so far the most effective therapeutic modality for end-stage liver diseases, but ischemia/reperfusion (I/R) injury represents a critical barrier to liver transplantation. Primary graft dysfunction and small-for-size syndrome are closely associated with I/R injury. Ischemic preconditioning (IPC) is defined as a brief period of liver ischemia followed by reperfusion, and has demonstrated protections against a prolonged I/R injury and improved the capacity of regeneration. The article aimed to review IPC literatures for the understanding of the effects of IPC on I/R injury involving in the procurement of donor liver and protective mechanisms. DATA SOURCES: A literature search of MEDLINE and Web of Science databases using 'liver transplantation', 'liver regeneration', 'hepatectomy', 'ischemia/reperfusion' and 'ischemic preconditioning' was performed, and then a large amount of related data was collected. RESULTS: The literature search provided a huge amount of evidence for the protective effects of IPC on I/R injury in liver transplantation, including reduction of blood loss in hepatectomy, intraoperative hemodynamic stability and its significant role in liver regeneration. The mechanism involves in balancing inflammatory cytokines, enhancing energy status and mitigating microcirculatory disturbance. CONCLUSION: IPC plays an essential role in hepatectomy before and after harvest of living donor liver and implantation of liver graft. 展开更多
关键词 liver regeneration ischemia/reperfusion injury ischemic preconditioning HEPATECTOMY liver transplantation
下载PDF
Role of Beclin 1-dependent Autophagy in Cardioprotection of Ischemic Preconditioning 被引量:7
16
作者 彭雯 刘艺 +1 位作者 徐卫娟 夏清华 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2013年第1期51-56,共6页
Emerging evidence indicates that ischemic preconditioning (IPC) induces autophagy which attenuates myocardial ischemia/reperfusion (I/R) injury. However, the precise mechanisms remain com- plex and unclear. The pr... Emerging evidence indicates that ischemic preconditioning (IPC) induces autophagy which attenuates myocardial ischemia/reperfusion (I/R) injury. However, the precise mechanisms remain com- plex and unclear. The present study was to investigate which autophagy pathway was involved in the cardioprotection induced by IPC, so that we can acquire an attractive treatment way for iscbemic heart disease. Adult male Sprague-Dawley (SD) rats were randomly divided into sham group, I/R group and IPC group. IPC was induced with three cycles of 5 min regional ischemia alternating with 5 m^n reper- fusion in a heart I/R model. Samples were taken from the center of the infracted heart and examined by using the electron microscopy, the terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) method, Western blotting and co-immunoprecipitation (Co-IP). A large number of autophagic vacuoles were observed in the cardiomyocytes oflPC group as compared with I/R group. LC3-II forma- tion, an autophagy marker, was up-regulated in IPC group as compared with FR group (P〈0.05). Moreover, the interaction between Beclin 1 and Bcl-2 was significantly increased in IPC group as com- pared with I/R group (P〈0.01). It was also found that IPC decreased I/R-induced apoptosis (P〈0.01). These results suggest that IPC inhibits Beclin 1-dependent excessive autophagy in reperfusion phase and cooperates with anti-apoptosis pathway to diminish the cell death induced by the myocardial I/R injury. 展开更多
关键词 AUTOPHAGY acute myocardial ischemia-reperfusion injury ischemic preconditioning Beclin 1 BCL-2
下载PDF
Hepatic ischemic preconditioning increases portal vein flow in experimental liver ischemia reperfusion injury 被引量:6
17
作者 Estela RR Figueira Joel A Rocha-Filho +5 位作者 Mauro Nakatani Marcelo FS Buto Eduardo R Tatebe Vitor O Andre Ivan Cecconello Luiz AC D'Albuquerque 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2014年第1期40-47,共8页
BACKGROUND: Ischemic preconditioning(IPC) has been shown to decrease liver injury and to increase hepatic microvascular perfusion after liver ischemia reperfusion. This study aimed to evaluate the effects of IPC on he... BACKGROUND: Ischemic preconditioning(IPC) has been shown to decrease liver injury and to increase hepatic microvascular perfusion after liver ischemia reperfusion. This study aimed to evaluate the effects of IPC on hemodynamics of the portal venous system. METHODS: Thirty-two rats were randomized into two groups: IPC group and control group. The rats of the IPC group underwent IPC by 10 minutes of liver ischemia followed by 10 minutes of reperfusion before liver ischemia, and the rats of the control group were subjected to 60 minutes of partial liver ischemia. Non-ischemic lobes were resected immediately after reperfusion. The animals were studied at 4 hours and 12 hours after reperfusion. Mean arterial pressure, heart rate, portal vein flow and pressure were analyzed. Blood was collected for the determination of the levels of aspartate aminotransferase, alanine aminotransferase, calcium, lactate, pH, bicarbonate, and base excess. RESULTS: IPC increased the mean portal vein flow at 4 hours and 12 hours after reperfusion. IPC recovered 78% of the meanportal vein flow at 12 hours after reperfusion. IPC decreased the levels of aspartate aminotransferase, alanine aminotransferase and lactate, and increased the levels of ionized calcium, bicarbonate and base excess at 12 hours after reperfusion. CONCLUSIONS: This study demonstrated that IPC increases portal vein flow and enhances hepatoprotective effects in liver ischemia reperfusion. The better recovery of portal vein flow after IPC may be correlated with the lower levels of transaminases and with the better metabolic profile. 展开更多
关键词 ischemic preconditioning portal vein flow liver ischemia
下载PDF
Impact of hypoglycemic agents on myocardial ischemic preconditioning 被引量:4
18
作者 Rosa Maria Rahmi Garcia Paulo Cury Rezende Whady Hueb 《World Journal of Diabetes》 SCIE CAS 2014年第3期258-266,共9页
Murry et al in 1986 discovered the intrinsic mechanism of profound protection called ischemic preconditioning. The complex cellular signaling cascades underlying this phenomenon remain controversial and are only parti... Murry et al in 1986 discovered the intrinsic mechanism of profound protection called ischemic preconditioning. The complex cellular signaling cascades underlying this phenomenon remain controversial and are only partially understood. However, evidence suggests that adenosine, released during the initial ischemic insult, activates a variety of G protein-coupled agonists, such as opioids, bradykinin, and catecholamines, resulting in the activation of protein kinases, especially protein kinase C(PKC). This leads to the translocation of PKC from the cytoplasm to the sarcolemma, where it stimulates the opening of the ATP-sensitive K+ channel, which confers resistance to ischemia. It is known that a range of different hypoglycemic agents that activate the same signaling cascades at various cellular levels can interfere with protection from ischemic preconditioning. This review examines the effects of several hypoglycemic agents on myocardial ischemic preconditioning in animal studies and clinical trials. 展开更多
关键词 ischemic preconditioning MYOCARDIAL ischemIA Coronary artery disease HYPOGLYCEMIC agents Diabetes MELLITUS
下载PDF
Remote ischemic preconditioning protects liver ischemia-reperfusion injury by regulating eNOS-NO pathway and liver microRNA expressions in fatty liver rats 被引量:7
19
作者 Yun-Fei Duan Yong An +1 位作者 Feng Zhu Yong Jiang 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2017年第4期387-394,共8页
BACKGROUND: Ischemic preconditioning (IPC) is a strategy to reduce ischemia-reperfusion (I/R) injury. The protective effect of remote ischemic preconditioning (RIPC) on liver I/R injury is not clear. This study aimed ... BACKGROUND: Ischemic preconditioning (IPC) is a strategy to reduce ischemia-reperfusion (I/R) injury. The protective effect of remote ischemic preconditioning (RIPC) on liver I/R injury is not clear. This study aimed to investigate the roles of RIPC in liver I/R in fatty liver rats and the involvement of endothelial nitric oxide synthase-nitric oxide (eNOS-NO) pathway and microRNA expressions in this process. METHODS: A total of 32 fatty rats were randomly divided into the sham group, I/R group, RIPC group and RIPC+I/R group. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and nitric oxide (NO) were measured. Hematoxylin-eosin staining was used to observe histological changes of liver tissues, TUNEL to detect hepatocyte apoptosis, and immunohistochemistry assay to detect heat shock protein 70 (HSP70) expression. Western blotting was used to detect liver inducible NOS (iNOS) and eNOS protein levels and realtime quantitative polymerase chain reaction to detect miR-34a, miR-122 and miR-27b expressions. RESULTS: Compared with the sham and RIPC groups, serum ALT, AST and iNOS in liver tissue were significantly higher in other two groups, while serum NO and eNOS in liver tissue were lower, and varying degrees of edema, degeneration and inflammatory cell infiltration were found. Cell apoptosis number was slightly lower in the RIPC+I/R group than that in I/R group. Compared with the sham group, HSP70 expressions were significantly increased in other three groups (all P<0.05). Compared with the sham and RIPC groups, elevated miR-34a expressions were found in I/R and RIPC+I/R groups (P<0.05). MiR-122 and miR-27b were found significantly decreased in I/R and RIPC+I/R groups compared with the sham and RIPC groups (all P<0.05). CONCLUSION: RIPC can reduce fatty liver I/R injury by affecting the eNOS-NO pathway and liver microRNA expressions. 展开更多
关键词 fatty liver ischemIA-REPERFUSION remote ischemic preconditioning nitric oxide heat shock protein 70 endothelial nitric oxide synthase inducible nitric oxide synthase liver microRNA
下载PDF
Ischemic preconditioning protects against ischemic brain injury 被引量:7
20
作者 Xiao-meng Ma Mei Liu +3 位作者 Ying-ying Liu Li-li Ma Ying Jiang Xiao-hong Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第5期765-770,共6页
In this study, we hypothesized that an increase in integrin αβand its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning wi... In this study, we hypothesized that an increase in integrin αβand its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αβ, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αβand vascular endothelial growth factor levels in the brain following ischemia. 展开更多
关键词 nerve regeneration brain injury integrin αvβ3 vascular endothelial growth factor vascular endothelial growth factor receptor vascular endothelial growth factor receptor-2 fetal liver kinase 1 ischemic preconditioning ischemic tolerance global cerebral ischemia cerebral ischemia cerebral infarction NSFC grant neural regeneration
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部