Neoproterozoic island arc assemblage of the Arabian–Nubian Shield(ANS)in the Eastern Desert(ED)of Egypt comprises juvenile suites of metavolcanics(MV),large amounts of meta-sedimentary rocks(MS),and voluminous metaga...Neoproterozoic island arc assemblage of the Arabian–Nubian Shield(ANS)in the Eastern Desert(ED)of Egypt comprises juvenile suites of metavolcanics(MV),large amounts of meta-sedimentary rocks(MS),and voluminous metagabbros-diorites(MGD)and syn-tectonic intrusions of older granitoids(OG).We report here the updates of these four rock units in terms of classification,distribution,chemical characteristics,geodynamic evolution,metamorphism,and ages.In addition,we discuss these integrated data to elucidate a reasonable and reliable model for crustal evolution in the ANS.The main features of these rock units indicate their relation to each other and the geodynamic environment dominated by early immature oceanic island arcs to primitive continental arcs.Integrated information of the island arc metavolcanic and plutonic rocks(gabbros,diorites,tonalites,and granodiorites)furnish evidence of the genetic relationships.These include proximity and a coeval nature in the field;all protolith magmas are subalkaline in nature following calc-alkaline series with minor tholeiitic affinities;common geochemical signature of the arc rocks and subduction-related magmatism;their similar enrichment in LREEs;and similar major element compositions with mafic melts derived from metasomatized mantle wedge.The volcano-sedimentary and the OG rocks underwent multiphase deformation events whereas the MGD complexes deformed slightly.Based on the magmatic,sedimentological,and metamorphic evolutions constrained by geochronological data as well as the progressive evolutionary trend from extensional to compressional regimes,a possible gradual decrease in the subducted slab dip angle is the most infl uential in any geodynamic model for arc assemblage in the ED of Egypt.展开更多
The Huanggang intrusive complex in northern Tongbai area was formed in Early Paleozoic. It mainly consists of ultra basic, basic, intermediate and acid rocks, dominated by intermediate and basic rocks. The complex be...The Huanggang intrusive complex in northern Tongbai area was formed in Early Paleozoic. It mainly consists of ultra basic, basic, intermediate and acid rocks, dominated by intermediate and basic rocks. The complex belongs to calc alkaline series. Geochemical characteristics of major and trace elements show that the complex was derived from the fractional crystallization of co source magma. It is suggested that the complex was formed in island arc tectonic environment and was closely related to the northward subduction of the Erlangping back arc basin. Thus, the subduction of the back arc basin can induce the island arc type magmatism similar to the one formed in the setting of ocean plate subduction.展开更多
The Kuril islands constitute a volcanic island arc-trench system, stretching from eastern Hokkaido (Japan) to Kamchatka (Russia) along the northwestern Pacific subduction system, The current arc consists of severa...The Kuril islands constitute a volcanic island arc-trench system, stretching from eastern Hokkaido (Japan) to Kamchatka (Russia) along the northwestern Pacific subduction system, The current arc consists of several volcanic islands mainly with Neogene basement and capped by several, predominantly andesitic, active subduction stratovolcanoes, Kunashir Island is the southwestern-most island of the arc, just off the Hokkaido coast and represents the study area in this paper. The island is composed of a Lower Complex of mainly late Miocene to Pliocene volcanic rocks, covered by an Upper Complex of younger (basaltic) andesitic lava flows and tuffs on which currently four active volcanic edifices are built. In the Lower Complex sub-volcanic and deeper-seated intrusives of the so-called Prasolov and Dokuchaev magmatic complexes are found, More differentiated, tonalitic-granodioritic rocks were collected from these small intrusive bodies. An early Oligocene zircon LA-ICP-MS U/Pb age of 31 Ma for the Prasolov Complex was obtained, showing that the basement of Kunashir Island is older than previously thought. Thermochronometry (apatite fission-track and U-Th-Sm/He and zircon U-ThJHe analyses) further shows that the magmatic basement of the island was rapidly exhumed in the Pleistocene to present levels in a differential pattern, with He-ages ranging from 1.9 to 0.8 Ma. It is shown that the northern section of the island was hereby exhumed more intensely.展开更多
The origin of arcuate islands and deep-sea trenches has been studied for a long time and various interpretations have been proposed. In this paper, some analytical models are put forward from a geometrical viewpoint a...The origin of arcuate islands and deep-sea trenches has been studied for a long time and various interpretations have been proposed. In this paper, some analytical models are put forward from a geometrical viewpoint and then the theoretical dip angles of the underthrusting slabs of circum-Pacific island arcs are computed and compared with those of the Benioff zone. As a result, it is found that the dip angle of the underthrusting slab is one of the main factors determining the curvature of the arcuate structure. The authors consider that this result may contribute to the plate theory.展开更多
Deep-water gravity depositional processes and evolution in arc systems have become topics of intense research focus in recent years.This study discusses the co-evolution of volcanism and deep-water gravity flow deposi...Deep-water gravity depositional processes and evolution in arc systems have become topics of intense research focus in recent years.This study discusses the co-evolution of volcanism and deep-water gravity flow deposits at the southern margin of the Junggar Basin,based on petrology,geochronology and geochemical analyses.The results show that a massive collapse of unstable sediments from the slope was triggered by volcanism,resulting in the formation of slumping gravity flows.The occurrence of volcanic beds in the slump deposits confirm that synchronous volcanism likely affected sediment instability,triggering gravity flows.The Th/Yb,Ta/Yb and Th/Ta elemental ratios,U-Pb ages of detrital zircons and paleocurrent directions indicate that the North Tianshan(NTS)island arc represents the provenance of the Qianxia Formation.Moreover,statistical data on the pyroclastic components in the gravity flow deposits reveal an intensity index of volcanism,indicating that volcanism is strongly related to gravity flow deposits,especially in terms of the type and distribution of the deposits.A model for volcanically-triggered deep-water gravity flow deposits is established,in order to provide a more in-depth understanding of the co-evolution of volcanism and gravity flow deposits within the depositional setting of the late Paleozoic NTS oceanic subduction margin in the Junggar Basin.展开更多
The Eastern Desert of Egypt suffered a protracted period of deformation triggered by cratonization of the new juvenile crust known as the Arabian Nubian Shield(ANS),which has been proposed for potential gold discoveri...The Eastern Desert of Egypt suffered a protracted period of deformation triggered by cratonization of the new juvenile crust known as the Arabian Nubian Shield(ANS),which has been proposed for potential gold discoveries associated with the corresponding tectonic event.The Fatira area,on the border of Egypt’s Northern and Central Eastern Deserts,is covered with metavolcanic rocks twisted by a dextral relocation of the Fatira Shear Zone(FSZ)relative to the Barud magmatic body.The recent study evaluated many deformed post-orogenic granitic intrusions and felsite dikes associated with promising mineralization localities,notably orogenic gold deposits.The combination of various field observations and remote sensing data,followed by the analysis of aeromagnetic enhanced maps,allowed the differentiation of distinct lithologies,structural features,and hydrothermal alterations in the study area.Additionally,the integrated results obtained from the different interpretation techniques are utilized to identify and confirm the previously supposed mineralized localities in the Fatira and Abu Zawal areas and predict other matched localities.The final ASTER,Sentinel 2 hydrothermal alteration,and orientation entropy heat maps demonstrate the association between these mineralized regions and major structures related to the FSZ late stage of deformation rather than other structures studied throughout the area of interest.展开更多
The Zedang and Luobusa ophiolites are located in the eastern section of the Yalung Zangbo ophiolite belt,and they share similar geological tectonic setting and age.Thus,an understanding of their origins is very import...The Zedang and Luobusa ophiolites are located in the eastern section of the Yalung Zangbo ophiolite belt,and they share similar geological tectonic setting and age.Thus,an understanding of their origins is very important for discussion of the evolution of the Eastern Tethys Ocean.There is no complete ophiolite assemblage in the Zedang ophiolite.The Zedang ophiolite is mainly composed of mantle peridotite and a suite of volcanic rocks as well as siliceous rocks,with some blocks of olivinepyroxenite.The mantle peridotite mainly consists of Cpx-harzburgite,harzburgite,some lherzolite,and some dunite.A suite of volcanic rocks is mainly composed of caic-aikaline pyroclastic rocks and secondly of tholeiitic pillow lavas,basaltic andesites,and some boninitic rocks with a lower TiO2 content (TiO2 < 0.6%).The pyroclastic rocks have a LREE-enriched REE pattern and a LILE-enriched (compared to HFSE) spider diagram,demonstrating an island-arc origin.The tholeiitic volcanic rock has a LREE-depleted REE pattern and a LILE-depleted (compared to HFSE) spider diagram,indicative of an origin from MORB.The boninitic rock was generated from fore-arc extension.The Luobusa ophiolite consists of mantle peridotite and mafic-ultramaflc cumulate units,without dike swarms and volcanic rocks.The mantle peridotite mainly consists of dunite,harzburgite with low-Opx (Opx < 25%),and harzburgite (Opx > 25%),which can be divided into two facies belts.The upper is a dunite-harzburgite (Opx < 25%) belt,containing many dunite lenses and a large-scale chromite deposit with high Cr203; the lower is a harzburgite (Opx >25%) belt with small amounts of dunite and lherzolite.The Luobusa mantle peridotite exhibits a distinctive vertical zonation of partial melting with high melting in the upper unit and low melting in the lower.Many mantle peridotites are highly depleted,with a characteristic U-shaped REE pattern peculiar to fore-arc peridotite.The Luobusa cumulates are composed of wehrlite and olivine-pyroxenite,of the P-P-G ophiolite series.This study indicates that the Luobusa ophiolite was formed in a fore-arc basin environment on the basis of the occurrence of highly depleted mantle peridotite,a high-Cr2O3 chromite deposit,and cumulates of the P-P-G ophiolite series.We conclude that the evolution of the Eastern Tethys Ocean involved three stages:the initial ocean stage (formation of MORB volcanic rock and dikes),the forearc extension stage (formation of high-Cr203 chromite deposits and P-P-G cumulates),and the islandarc stage (formation of caic-alkaline pyroclastic rocks).展开更多
Precise in situ zircon U-Pb dating and Lu-Hf isotopic measurement using an LA-ICP-MS system, whole-rock major and trace element geochemistry and Sr-Nd isotope geochemistry were conducted on the volcanic host rocks of ...Precise in situ zircon U-Pb dating and Lu-Hf isotopic measurement using an LA-ICP-MS system, whole-rock major and trace element geochemistry and Sr-Nd isotope geochemistry were conducted on the volcanic host rocks of the Tongyu copper deposit on the basis of further understanding of its geological characteristics. Three zircon samples from the volcanic host rocks yielded 206Pb/238 U weighted average ages ranging from 436±4 Ma to 440±5 Ma, which are statistically indistinguishable and coeval with the ca. 440 Ma northward subduction event of the Paleo-Qinling oceanic slab. The volcanic host rocks were products of magmatic differentiation that evolved from basalt to andesite to dacite to rhyolite, forming an integrated tholeiitic island arc volcanic rock suite. The primitive mantle-normalized trace element patterns for most samples show characteristics of island arc volcanic rocks, such as relative enrichment of LILE(e.g. Th, U, Pb and La) and depletion of HFSE(e.g. Nb, Ta, Ti, Zr and Hf). Discrimination diagrams of Ta/Yb vs Th/Yb, Ta vs Th, Yb vs Th/Ta, Ta/Hf vs Th/Hf, Hf/3 vs Th vs Nb/16, La vs La/Nb and Nb vs Nb/Th all suggest that both the volcanic host rocks from the Tongyu copper deposit and the volcanic rocks from the regional Xieyuguan Group were formed in an island arc environment related to subduction of an oceanic slab. Values of ISr(0.703457 to 0.708218) and εNd(t)(-2 to 5.8) indicate that the source materials of volcanic rocks from the Tongyu copper deposit and the Xieyuguan Group originated from the metasomatised mantle wedge with possible crustal material assimilation. Most of the volcanic rock samples show good agreement with the values of typical island arc volcanic rocks in the ISr-εNd(t) diagram. The involvement of crustal-derived material in the magma of the volcanic rocks from the Tongyu copper deposit was also reflected in the zircon εHf(t) values, which range from-3.08 to 10.7, and the existence of inherited ancient xenocrystic zircon cores(2616±39 Ma and 1297±22 Ma). The mineralization of the Tongyu copper deposit shows syn-volcanic characteristics such as layered orebodies interbedded with the volcanic rock strata, thus, the zircon U-Pb age of the volcanic host rocks can approximately represent the mineralization age of the Tongyu copper deposit. Both the Meigou pluton and the volcanic host rocks were formed during the ca. 440 Ma northward subduction of the Paleo-Qinling Ocean when high oxygen fugacity aqueous hydrothermal fluid released by dehydration of the slab and the overlying sediments fluxed into the mantle wedge, triggered partial melting of the mantle wedge, and activated and extracted Cu and other ore-forming elements. The magma and ore-bearing fluid upwelled and erupted, and consequently formed the island arc volcanic rock suite and the Tongyu VHMS-type copper deposit.展开更多
The Altay orogenic belt of Xinjiang in NW China represents one of the important sites of juvenile crustal growth during the Phanerozoic. However, some important issues, e.g., tectonic evolution and petrogenesis, still...The Altay orogenic belt of Xinjiang in NW China represents one of the important sites of juvenile crustal growth during the Phanerozoic. However, some important issues, e.g., tectonic evolution and petrogenesis, still remain controversial. The picrites in the south margin of the Altay orogenic belt were discovered in the lower part of marine volcanic-sedimentary sequences of the northwest-striking Middle Devonian Beitashan Formation (Fm.), which consists chiefly of intermediate-basic volcanic rocks intercalated minor carbonate, siltstone and siliceous rocks. The picrites are usually highly porphyritic, and contain abundant forsteritic olivine phenocrysts with minor clinopyroxene distributed in the groundmass, which consist of olivine, clinopyroxene and plagioclase with minor Fe-Ti oxides. The MgO contents of the picrites range from 14 wt% to 22 wt% with Mg# (atomic Mg/(Mg+Fe) ratio) of 0.75-0.80. They are characterized by slightly negative Ti anomalies, remarkably negative Nb and Ta anomalies and slightly positive P and Sm anomalies with the similar abundances of HFSE as MORB on the MORB-normalized trace element patterns, all of which characterize typical island arc magmas. In combing with the southwestward migration of the magmas of the Beitashan Fm., we propose that the magmas may result from the southwestward subduction of Junggar ocean plate. The Zr/Nb ratios (23-66) of both picrites and basalts resemble the MORB (10-66), suggesting that they were derived from the MORB-like sources. However, the basalts and picrites display some distinguishable element ratios and REE patterns, e.g., Ti/V (23-35) and Zr/Sm (18-23) ratios of basalts are higher than those of picrites (14-17 and 14-15 respectively), and the basalts display flat-type REE-chondrite patterns whereas the picrites are characterized by lower total REE concentrations ((26-34)×10^-6) and slight enrichment of light REE. These distinguished geochemical characteristics could be interpreted by different partial melting degrees and mantle sources, i.e., the basalts were generated by lower partial melting of amphibole-bearing spinel peridotite which was metasomatized by fluids released from subducted oceanic crust, and the picrites were resulted from the higher degree of partial melting of metasomatized garnet peridotite under high temperature. In contrast, the andesite with significant LREE and LILE enrichment may be resulted from the partial melting of eclogites.展开更多
The Langdu high-K calc-alkaline intrusions are located in the Zhongdian area, which is the southern part of the Yidun island arc. These intrusive rocks consist mainly of monzonite porphyry, granodiorite, and diorite p...The Langdu high-K calc-alkaline intrusions are located in the Zhongdian area, which is the southern part of the Yidun island arc. These intrusive rocks consist mainly of monzonite porphyry, granodiorite, and diorite porphyry. The K20 content of majority of these rocks is greater than 3%, and, in the K20-SiO2 diagram, all the samples fall into the high-K calc-alkaline to shoshonitic fields. They are enriched in light rare earth elements (LREEs) and depleted in heavy rare earth elements (HREEs; LaN/YbN = 14.3-21.2), and show slightly negative Eu anomalies (6Eu = 0.77-1.00). These rocks have high K, Rb, Sr, and Ba contents; moderate to high enrichment of compatible elements (Cr = 36.7-79.9 ppm, Co = 9.6-16.4 ppm, and MgO = 2.2%-3.4%); low Nb, Ta, and Ti contents, and characteristic of low high field strength elements(HFSEs) versus incompatible elements ratios (Nb/Th = 0.75, Nb/La = 0.34) and incompatible elements ratios (Nb/U = 3.0 and Ce/Pb = 5.1, Ba/Rb = 12.0). These rocks exhibit restricted Sr and Nd isotopic compositions, with (87Sr/S6Sr)i values ranging from 0.7044 to 0.7069 and ENd(t) values from -2.8 to -2.2. The Sr-Nd isotope systematic and specific trace element ratios suggest that Langdu high-K calc-alkaline intrusive rocks derived from a metasomatized mantle source. The unique geochemical feature of intrusive rocks can be modeled successfully using different members of a slightly enriched mantle, a slab-derived fluid, and terrigenous sediments. It can be inferred that the degree of partial melting and the presence of specific components are temporally related to the tectonic evolution of the Zhongdian island arc. Formation of these rocks can be explained by the various degrees of melting within an ascending region of the slightly enriched mantle, triggered by the subduction of the Garz^--Litang ocean, and an interaction between the slab-derived fluid and the terrigenous sediments.展开更多
The Tongyu copper deposit, located in the western part of the North Qinling Orogen, China, is one of several volcanic-hosted massive sulphide(VHMS) deposits with industrial value and is also a typical example of min...The Tongyu copper deposit, located in the western part of the North Qinling Orogen, China, is one of several volcanic-hosted massive sulphide(VHMS) deposits with industrial value and is also a typical example of mineralization related to the subduction and metallogenesis during the Caledonian orogeny. We conducted systematic lead-sulphur isotope geochemical analyses of the Tongyu deposit to understand the possible ore-forming material sources and tectonic settings. Twenty-six sulphide samples yielded clustered δ^34SCDT values of 1.13‰-3.36‰, average 2.22‰, and show a tower-type distribution,implying that the sulphur of the Tongyu copper deposit mainly originated from a mantle source. The Pb isotope compositions of sulphides(^206Pb/^204Pb = 17.59225-18.56354, average 18.32020; ^207Pb/^204Pb =15.51770-15.69381, average 15.66217; ^208Pb/^204Pb= 37.99969-39.06953, average 38.52722) are close to the values of the volcanic host rocks(^206Pb/^204PbPb= 18.10678-18.26293, average 18.21158; ^207Pb/^204PbPb =15.63196-15.68188, average 15.65345; ^208Pb/^204PbPb= 38.43676-38.56360, average 38.49171), thus consistent with the Pb in ores and volcanic host rocks having been derived from a common source that was island-arc Pb related to oceanic crust subduction. The northward subduction of the Palaeo-Qinling oceanic crust triggered dehydration of the slab, which generated a large amount of high-oxygen-fugacity aqueous hydrothermal fluid. The fluid rose into the mantle wedge, activated and extracted metallogenic material and promoted partial melting of the mantle wedge. The magma and ore-forming fluid welled up and precipitated, finally forming the Tongyu VHMS copper deposit.展开更多
Sanjiang area in Southwestern China is tectonically situated at the east end of Himalaya-Tethys tectonic domain and at the conjunction of Tethyan Mountain Chain and Circum-Pacific Mountain Chain. It is one of the key ...Sanjiang area in Southwestern China is tectonically situated at the east end of Himalaya-Tethys tectonic domain and at the conjunction of Tethyan Mountain Chain and Circum-Pacific Mountain Chain. It is one of the key areas to understand the global tectonics and also one of gigantic metallogenic provinces in China and even in the world . Volcanism had occurred during the period of time from Proterozoic to Cenozoic . The most important and active periods of volcanism , however , are Carboniferous , Permian and Triassic . The pattern of spatial distribution of Sanjiang volcanic rocks and ophiolites can essentially be described as that several intra - continental micro-massif volcanic districts are respectively sandwiched between each two of four coupling ophioh'te - arc volcanic belts , which are successively from west to east : Dingqing - Nujiang belt , Lancangjiang belt , Jinshajiang belt and Ganzi-Litang belt . Four tectono - magma tic types of volcanic rocks have been rec-ognized in Sanjiang area as follows: mid -ocean- ridge/ para - mid - ocean - ridge type , arc type , collision type and intra - continent type . The petrotectonic assemblages within suture zones , such as oceanic assemblage , subduction - related assemblage , collision - related assemblage etc ., have been paid more attention to because of their significant importance in reconstruction of the history of Sanjiang Tethyan orogenic belt and plate tectonics .Couph'ng ophiolite - arc volcanic belt, para-mid - ocean - ridge volcanism and volcanic rocks, post -collision arc volcanism and volcanic rocks and tensional volcanic arc are newly defined in the present work . These new facts and concepts will be greatly beneficial to understanding the history of Sanjiang Tethyan plate tectonics and the complexity of the volcanism in orogenic belts and of the evolution of the continental lithosphere . A preliminary model of the evolution of Sanjiang Tethys under petrotectonic constraints was presented . It consists of the following four successive stages : (1) Late Paleozoic ocean spreading - dominant stage , (2 ) Early Mesozoic subduction and closing - dominant stage , (3) Late Mesozoic collisional orogenic stage characterized by crust shortening and compression , and (4 ) Cenozoic intra - continent orogenic stage characterized by crustal slipping - out and strike - slipping .展开更多
The porphyry copper belt in the Geza island arc in southwestern China is the only Indosinian porphyry copper metallogenic belt that has been discovered and evaluated so far.The Pulang porphyry copper deposit(also refe...The porphyry copper belt in the Geza island arc in southwestern China is the only Indosinian porphyry copper metallogenic belt that has been discovered and evaluated so far.The Pulang porphyry copper deposit(also referred to as the Pulang deposit)in this area has proven copper reserves of 5.11×106 t.This deposit has been exploited on a large scale using advanced mining methods,exhibiting substantial economic benefit.Based on many research results of previous researchers and the authors’team,this study proposed the following key insights.(1)The Geza island arc was once regarded as an immature island arc with only andesites and quartz diorite porphyrites occurring.This understanding was overturned in this study.Acidic endmember components such as quartz monzonite porphyries and quartz monzonite porphyries have been identified in the Geza island arc,and the mineralization is mainly related to the magmatism of quartz monzonite porphyries.(2)Complete porphyry orebodies and large vein orebodies have developed in the Pulang deposit.Main orebody KT1 occurs in the transition area between the potassium silicate alteration zone of quartz monzonite porphyries and the sericite-quartz alteration zone.Most of them have developed in the potassium silicate alteration zone.The main orebody occurs as large lenses at the top of the hanging wall of rock bodies,with an engineering-controlled length of 1920 m and thickness of 32.5‒630.29 m(average:187.07 m).It has a copper grade of 0.21%-1.56%(average:0.42%)and proven copper resources of 5.11×10^(6) t,which are associated with 113 t of gold,1459 t of silver,and 170×10^(3) t of molybdenum.(3)Many studies on diagenetic and metallogenic chronology,isotopes,and fluid inclusions have been carried out for the Pulang deposit,including K-Ar/Ar-Ar dating of monominerals(e.g.,potassium feldspars,biotites,and amphiboles),zircon U-Pb dating,and molybdenite Re-Os dating.The results show that the porphyries in the Pulang deposit are composite plutons and can be classified into pre-mineralization quartz diorite porphyrites,quartz monzonite porphyries formed during the mineralization,and post-mineralization granite porphyries,which were formed at 223±3.7 Ma,218±4 Ma,and 207±3.9 Ma,respectively.The metallogenic age of the Pulang deposit is 213‒216 Ma.(4)The petrogeochemical characteristics show that the Pulang deposit has the characteristics of volcanic arc granites.The calculation results of trace element contents in zircons show that quartz monzonite porphyries and granite porphyries have higher oxygen fugacity.The isotopic tracing results show that the diagenetic and metallogenic materials were derived from mixed crust-and mantle-derived magmas.展开更多
The Sanandaj–Sirjan Zone(SSZ),as the metamorphic-magmatic core of the Zagros Orogen in southwestern Iran,contains several styles of gold deposit of Phanerozoic age.The northern SSZ includes an ENE-trending goldfield ...The Sanandaj–Sirjan Zone(SSZ),as the metamorphic-magmatic core of the Zagros Orogen in southwestern Iran,contains several styles of gold deposit of Phanerozoic age.The northern SSZ includes an ENE-trending goldfield belt.This area that encompasses the main orogenic gold deposits,e.g.,Qolqoleh,Kervian,Qabaqhlujeh,and the Barika VMS goldfield,was chosen for this research to study the spatial and temporal relationships between gold mineralization and orogenic phases.Regarding the rock unit variations,metamorphism,magmatism and the settings of the structures,the study area is divided into four distinct tectonic blocks,separated by three main NW-trending thrust faults(suture lines)including,from NE to SW,the Tamugheh,the Ebrahim Hesar and the Zagros main thrust(ZMT)faults.The area between the Tamugheh and Ebrahim Hesar faults is a tectonized/uplifted basement of accretionary wedge-originated thrust slivers,hosting the above orogenic gold mineralizations.The other area between the here termed Ebrahim Hesar fault and the ZMT is an island-arc basin,proposed here as the Sardasht–Barika zone,including the only recognized massive sulfide gold district all over the SSZ,named Barika.The Barika goldfield was metamorphosed,deformed and enriched due to the islandarc collision to the Arabian continent,before the closure of Neotethys on the eastern flank.展开更多
The Pertek granitoid consisting dominantly of diorite, quartz diorite, quartz monzodiorite, tonalite and lesser granite, adamellite and syenite, is considered to form the easternmost continuation of the Central Anatol...The Pertek granitoid consisting dominantly of diorite, quartz diorite, quartz monzodiorite, tonalite and lesser granite, adamellite and syenite, is considered to form the easternmost continuation of the Central Anatolian Crystalline Complex. Diorite and monzonites of this granitoid complex are cut by the granitic dykes. The Pertek granitoid, in the study area, is found in the Permo-Triassic Keban metamorphic sequence along intrusive and tectonic contacts. Along the intrusive contacts metasomatic mineralizations are common. Granitoids are, depending on the mineralogical composition, low-, middle- high-K subalkaline features. Major oxide-SiO2 variation diagrams show that fractionation (particularly plagioclase, hornblend, pyroxene and olivine fractionation) played an important role on the granitoid formation during a continuous crystallization process. Distribution of the samples from the Pertek granitoid in the tectonic setting diagrams, and their chondrite- and primordial mantle-normalized trace element patterns resemble to the of arc-type granitoids. Trace element and rare earth element compositions indicate that the magma, from which the Pertek granitoid crystallized, derived from a mantle that was enriched by the fluids derived from the subducted slab, however this magma was contaminated by the crust during its intrusion. These geochemical characteristics are also supported by the field observations. The field and geochemical characteristics of the Pertek Granitiod suggest that they are similar to the other granitoids cropping out in the central and eastern Anatolia and they form the lateral continuation of the same magmatic belt.展开更多
The global seismicity shows a characteristic distance of about 23°. The middle deep and deep earthquakes in the European and Asian blocks concentrate on several zones which separate about 23° away from earc...The global seismicity shows a characteristic distance of about 23°. The middle deep and deep earthquakes in the European and Asian blocks concentrate on several zones which separate about 23° away from earch other. The shallow strong earthquakes ( M S≥7) form belts of over 20°, the ends of these belts are near the concentration points of middle deep and deep earthuakes. The Circular Pacific island arcs, volcanoes, shallow earthquakes, middle deep and deep earthquakes also show the characteristic distance of about 23°.展开更多
According to the seismic data (mb≥5. 0) from 1977 to 1991 and the focal mechanisms of 68 earthquakes from 1961 to 1991, the characters of seismicity and stress field in Okinawa Trough and Ryukyu regions are discussed...According to the seismic data (mb≥5. 0) from 1977 to 1991 and the focal mechanisms of 68 earthquakes from 1961 to 1991, the characters of seismicity and stress field in Okinawa Trough and Ryukyu regions are discussed in this paper, and the paper suggests that: ① The Tokara Channel fault belt is a fault belt with seismicity, cutting through lithosphere. ② The different stress state in the both subducting slabs on the both sides of Tokara Channel fault belt are caused by the difference of subducting depth of the both slabs. ③ The seismicity and stress field in the Okinawa Trough and Ryukyu regions are related not only to the subduction of the Philippine Sea Plate but also to the self-expanding action of Okinawa Trough.展开更多
Based on the detailed geological investigation and record of galleries and drill holes, a new idea has been advanced that granodiorite is earlier than quartz monzodiorite porphyry. Both of them are products of two dif...Based on the detailed geological investigation and record of galleries and drill holes, a new idea has been advanced that granodiorite is earlier than quartz monzodiorite porphyry. Both of them are products of two different magmatic intrusive activities. The analysis results of trace elements show that the Sr content is beyond any other crustal rock and the Th content is beyond that of Ta. The whole-rock analysis indicates that rockbody is rich in CaO and poor in K2O. In the composition of Pb istope of rockbody, the ratio of 207 Pb to 204Pb is less than 15. 60. All these show that the magma mainly comes from the upper mantle. Ti,Zr,Cr,Nb trace elements and the relation between the Gardini index(τ) and the Rittmann index(σ) indicate that the rockbodies are formed in the orogenic belt and island arc tectonic setting. The summation (2REE) and the characteristic value(m( La)/m( Yb)) of the rare earth elements show that the original rock is alkalic basalt. The analysis of the characteristic values of REE and the quantitative modeling calculation indicate that the rock-forming process is dominated by mixed crystallization. According to the analysis on the rock-forming order, magmatic source, tectonic setting and rock-forming process, combined with the achievements of regional rock-controlling structures and division of sublayer of crust, it is believed that Fenghuangshan rock body derives from the deep-seated alkalic basalt magma. The rock-forming process has undertaken sialic and calcareous assimilation and contamination of two different degrees. The rock-forming model belongs to the typical assimilation and fractional cryatalization mechanism.展开更多
In this study,we investigated Early Paleozoic magmatic rocks of the Manlai Formation exposed along the eastern margin of the Lancang terrane to better understand the tectonic history of the Proto-Tethys.We present pet...In this study,we investigated Early Paleozoic magmatic rocks of the Manlai Formation exposed along the eastern margin of the Lancang terrane to better understand the tectonic history of the Proto-Tethys.We present petrological,geochemical and whole-rock Sr-Nd and zircon Hf isotopic data for basalts and gabbros sampled from the Qianmai mélange.Zircon grains from six basaltic and gabbroic samples yielded U-Pb ages of 495-482 Ma.These rocks are characterized by tholeiitic and Nbenriched compositions,with Nb/La ratios in the range of 0.38-1.38,similar to the typical Nb-enriched basalts.All the mafic rocks show slightly negative to positiveε_(Nd)(t)(-1.67 to+4.32)and zirconε_(Hf)(t)values(-7.3 to+3.8).Elemental and isotopic data suggest that the Qianmai Nb-enriched mafic rocks were mainly derived from the mixing of an OIB-like source with a subduction-modified mantle wedge source.Together with magmatic and sedimentary records of similar ages in the Lancang terrane and the Baoshan Block,our results reveal Early Paleozoic magmatic and sedimentary sequences along an active margin of the Proto-Tethys.Taking into account the recently identified Early Paleozoic ophiolitic mélange in the Yunxian-Menghai belt,we consider the Qianmai magmatic rocks to represent the products of early-stage subduction-related magmatism within a primitive island arc or fore-arc setting associated with the southward subduction of the Proto-Tethys.We infer that prolonged south-dipping subduction on the northern margin of Gondwana persisted from the Cambrian to the Late Ordovician.展开更多
The Yidun Island Arc in the Three Rivers (Jinsha River, Lancang River, Nujiang River) region of southwestern China is one of the most important Kuroko-type volcanogenic massive sulfide deposits (VMS) in China. Intra-a...The Yidun Island Arc in the Three Rivers (Jinsha River, Lancang River, Nujiang River) region of southwestern China is one of the most important Kuroko-type volcanogenic massive sulfide deposits (VMS) in China. Intra-arc rifting of Yidun Island occurred during the Late Carnian-Norian when VMS deposits such as the Gacun Pb-Zn-Cu deposit were formed. A bivalve fauna was found in fine-grained tuffaceous slate and in mineralized tuffaceous siltstone containing very high contents of Pb (45.01-103.37 ppm) and Zn (135.78-300.03 ppm) of the upper Tumugou Formation in the Changtai-Gacun volcanic-sedimentary rift basin. Stratigraphically, the bivalve-bearing beds are equivalents of the Gacun Pb-Zn-Cu deposits. The diversity of this bivalve fauna is very low. It consists mainly of the thin-shelled, epibyssate suspension-feeding bivalves Pergamidia eumenea and Parapergamidia changtaiensis, the burrowing large, elongated, suspension-feeding Trigonodus keuperinus and Unionites? sp., and occasional specimens of the endobyssate suspension-feeding Trigonodus? sp. and the deep burrowing suspension-feeding Pleuromya markiamensis. Individuals of the first four taxa are so abundant that the specimens are sometimes concentrated in shell beds, probably indicating a gregarious habit. This bivalve fauna is associated with internal moulds of cylindrical, slightly conical tubes most likely produced by a worm-shaped organism. Composition, morphology, diversity, and high abundance of this fauna, chemical features of the surrounding sediment, and the tectonic setting all suggest that this bivalve fauna lived in a deep-water environment in or around a hydrothermal vent system.展开更多
文摘Neoproterozoic island arc assemblage of the Arabian–Nubian Shield(ANS)in the Eastern Desert(ED)of Egypt comprises juvenile suites of metavolcanics(MV),large amounts of meta-sedimentary rocks(MS),and voluminous metagabbros-diorites(MGD)and syn-tectonic intrusions of older granitoids(OG).We report here the updates of these four rock units in terms of classification,distribution,chemical characteristics,geodynamic evolution,metamorphism,and ages.In addition,we discuss these integrated data to elucidate a reasonable and reliable model for crustal evolution in the ANS.The main features of these rock units indicate their relation to each other and the geodynamic environment dominated by early immature oceanic island arcs to primitive continental arcs.Integrated information of the island arc metavolcanic and plutonic rocks(gabbros,diorites,tonalites,and granodiorites)furnish evidence of the genetic relationships.These include proximity and a coeval nature in the field;all protolith magmas are subalkaline in nature following calc-alkaline series with minor tholeiitic affinities;common geochemical signature of the arc rocks and subduction-related magmatism;their similar enrichment in LREEs;and similar major element compositions with mafic melts derived from metasomatized mantle wedge.The volcano-sedimentary and the OG rocks underwent multiphase deformation events whereas the MGD complexes deformed slightly.Based on the magmatic,sedimentological,and metamorphic evolutions constrained by geochronological data as well as the progressive evolutionary trend from extensional to compressional regimes,a possible gradual decrease in the subducted slab dip angle is the most infl uential in any geodynamic model for arc assemblage in the ED of Egypt.
文摘The Huanggang intrusive complex in northern Tongbai area was formed in Early Paleozoic. It mainly consists of ultra basic, basic, intermediate and acid rocks, dominated by intermediate and basic rocks. The complex belongs to calc alkaline series. Geochemical characteristics of major and trace elements show that the complex was derived from the fractional crystallization of co source magma. It is suggested that the complex was formed in island arc tectonic environment and was closely related to the northward subduction of the Erlangping back arc basin. Thus, the subduction of the back arc basin can induce the island arc type magmatism similar to the one formed in the setting of ocean plate subduction.
基金supported by a start-up grant from the Faculty of Sciences,Ghent University(JDG)and the Australian Research Council(Grant No.DP150101730)
文摘The Kuril islands constitute a volcanic island arc-trench system, stretching from eastern Hokkaido (Japan) to Kamchatka (Russia) along the northwestern Pacific subduction system, The current arc consists of several volcanic islands mainly with Neogene basement and capped by several, predominantly andesitic, active subduction stratovolcanoes, Kunashir Island is the southwestern-most island of the arc, just off the Hokkaido coast and represents the study area in this paper. The island is composed of a Lower Complex of mainly late Miocene to Pliocene volcanic rocks, covered by an Upper Complex of younger (basaltic) andesitic lava flows and tuffs on which currently four active volcanic edifices are built. In the Lower Complex sub-volcanic and deeper-seated intrusives of the so-called Prasolov and Dokuchaev magmatic complexes are found, More differentiated, tonalitic-granodioritic rocks were collected from these small intrusive bodies. An early Oligocene zircon LA-ICP-MS U/Pb age of 31 Ma for the Prasolov Complex was obtained, showing that the basement of Kunashir Island is older than previously thought. Thermochronometry (apatite fission-track and U-Th-Sm/He and zircon U-ThJHe analyses) further shows that the magmatic basement of the island was rapidly exhumed in the Pleistocene to present levels in a differential pattern, with He-ages ranging from 1.9 to 0.8 Ma. It is shown that the northern section of the island was hereby exhumed more intensely.
文摘The origin of arcuate islands and deep-sea trenches has been studied for a long time and various interpretations have been proposed. In this paper, some analytical models are put forward from a geometrical viewpoint and then the theoretical dip angles of the underthrusting slabs of circum-Pacific island arcs are computed and compared with those of the Benioff zone. As a result, it is found that the dip angle of the underthrusting slab is one of the main factors determining the curvature of the arcuate structure. The authors consider that this result may contribute to the plate theory.
基金jointly funded by the National Natural Science Foundation of China(Grant Nos.41972120,42172129)the State Key Laboratory of Paleobiology and Stratigraphy(Nanjing Institute of Geology and Paleontology,CAS)(Grant No.173131)+1 种基金the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(Grant No.2020CX050103)the China Postdoctoral Science Foundation(Grant No.2021M702720)。
文摘Deep-water gravity depositional processes and evolution in arc systems have become topics of intense research focus in recent years.This study discusses the co-evolution of volcanism and deep-water gravity flow deposits at the southern margin of the Junggar Basin,based on petrology,geochronology and geochemical analyses.The results show that a massive collapse of unstable sediments from the slope was triggered by volcanism,resulting in the formation of slumping gravity flows.The occurrence of volcanic beds in the slump deposits confirm that synchronous volcanism likely affected sediment instability,triggering gravity flows.The Th/Yb,Ta/Yb and Th/Ta elemental ratios,U-Pb ages of detrital zircons and paleocurrent directions indicate that the North Tianshan(NTS)island arc represents the provenance of the Qianxia Formation.Moreover,statistical data on the pyroclastic components in the gravity flow deposits reveal an intensity index of volcanism,indicating that volcanism is strongly related to gravity flow deposits,especially in terms of the type and distribution of the deposits.A model for volcanically-triggered deep-water gravity flow deposits is established,in order to provide a more in-depth understanding of the co-evolution of volcanism and gravity flow deposits within the depositional setting of the late Paleozoic NTS oceanic subduction margin in the Junggar Basin.
基金The Egyptian ministry for higher educationthe Stipendium Hungaricum scholarship are thanked for funding the first and third authors under the joint executive program between Hungary and Egypt。
文摘The Eastern Desert of Egypt suffered a protracted period of deformation triggered by cratonization of the new juvenile crust known as the Arabian Nubian Shield(ANS),which has been proposed for potential gold discoveries associated with the corresponding tectonic event.The Fatira area,on the border of Egypt’s Northern and Central Eastern Deserts,is covered with metavolcanic rocks twisted by a dextral relocation of the Fatira Shear Zone(FSZ)relative to the Barud magmatic body.The recent study evaluated many deformed post-orogenic granitic intrusions and felsite dikes associated with promising mineralization localities,notably orogenic gold deposits.The combination of various field observations and remote sensing data,followed by the analysis of aeromagnetic enhanced maps,allowed the differentiation of distinct lithologies,structural features,and hydrothermal alterations in the study area.Additionally,the integrated results obtained from the different interpretation techniques are utilized to identify and confirm the previously supposed mineralized localities in the Fatira and Abu Zawal areas and predict other matched localities.The final ASTER,Sentinel 2 hydrothermal alteration,and orientation entropy heat maps demonstrate the association between these mineralized regions and major structures related to the FSZ late stage of deformation rather than other structures studied throughout the area of interest.
基金jointly supported by the Geological Survey Project of Chinese (Grant No.1212010911070 and No.12120113093900)National Science Foundation of China (Grant No. 41072167)Institute of Geology, Chinese Academy of Geological Sciences (Grant No.J1309)
文摘The Zedang and Luobusa ophiolites are located in the eastern section of the Yalung Zangbo ophiolite belt,and they share similar geological tectonic setting and age.Thus,an understanding of their origins is very important for discussion of the evolution of the Eastern Tethys Ocean.There is no complete ophiolite assemblage in the Zedang ophiolite.The Zedang ophiolite is mainly composed of mantle peridotite and a suite of volcanic rocks as well as siliceous rocks,with some blocks of olivinepyroxenite.The mantle peridotite mainly consists of Cpx-harzburgite,harzburgite,some lherzolite,and some dunite.A suite of volcanic rocks is mainly composed of caic-aikaline pyroclastic rocks and secondly of tholeiitic pillow lavas,basaltic andesites,and some boninitic rocks with a lower TiO2 content (TiO2 < 0.6%).The pyroclastic rocks have a LREE-enriched REE pattern and a LILE-enriched (compared to HFSE) spider diagram,demonstrating an island-arc origin.The tholeiitic volcanic rock has a LREE-depleted REE pattern and a LILE-depleted (compared to HFSE) spider diagram,indicative of an origin from MORB.The boninitic rock was generated from fore-arc extension.The Luobusa ophiolite consists of mantle peridotite and mafic-ultramaflc cumulate units,without dike swarms and volcanic rocks.The mantle peridotite mainly consists of dunite,harzburgite with low-Opx (Opx < 25%),and harzburgite (Opx > 25%),which can be divided into two facies belts.The upper is a dunite-harzburgite (Opx < 25%) belt,containing many dunite lenses and a large-scale chromite deposit with high Cr203; the lower is a harzburgite (Opx >25%) belt with small amounts of dunite and lherzolite.The Luobusa mantle peridotite exhibits a distinctive vertical zonation of partial melting with high melting in the upper unit and low melting in the lower.Many mantle peridotites are highly depleted,with a characteristic U-shaped REE pattern peculiar to fore-arc peridotite.The Luobusa cumulates are composed of wehrlite and olivine-pyroxenite,of the P-P-G ophiolite series.This study indicates that the Luobusa ophiolite was formed in a fore-arc basin environment on the basis of the occurrence of highly depleted mantle peridotite,a high-Cr2O3 chromite deposit,and cumulates of the P-P-G ophiolite series.We conclude that the evolution of the Eastern Tethys Ocean involved three stages:the initial ocean stage (formation of MORB volcanic rock and dikes),the forearc extension stage (formation of high-Cr203 chromite deposits and P-P-G cumulates),and the islandarc stage (formation of caic-alkaline pyroclastic rocks).
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.41272092,41421002 and 41072068)Program for Changjiang Scholars and Innovative Research Team in University(Grant IRT1281)+1 种基金Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2013JZ013)Graduate Innovation Funds of Northwest University,China(Grant No.YZZ12006)
文摘Precise in situ zircon U-Pb dating and Lu-Hf isotopic measurement using an LA-ICP-MS system, whole-rock major and trace element geochemistry and Sr-Nd isotope geochemistry were conducted on the volcanic host rocks of the Tongyu copper deposit on the basis of further understanding of its geological characteristics. Three zircon samples from the volcanic host rocks yielded 206Pb/238 U weighted average ages ranging from 436±4 Ma to 440±5 Ma, which are statistically indistinguishable and coeval with the ca. 440 Ma northward subduction event of the Paleo-Qinling oceanic slab. The volcanic host rocks were products of magmatic differentiation that evolved from basalt to andesite to dacite to rhyolite, forming an integrated tholeiitic island arc volcanic rock suite. The primitive mantle-normalized trace element patterns for most samples show characteristics of island arc volcanic rocks, such as relative enrichment of LILE(e.g. Th, U, Pb and La) and depletion of HFSE(e.g. Nb, Ta, Ti, Zr and Hf). Discrimination diagrams of Ta/Yb vs Th/Yb, Ta vs Th, Yb vs Th/Ta, Ta/Hf vs Th/Hf, Hf/3 vs Th vs Nb/16, La vs La/Nb and Nb vs Nb/Th all suggest that both the volcanic host rocks from the Tongyu copper deposit and the volcanic rocks from the regional Xieyuguan Group were formed in an island arc environment related to subduction of an oceanic slab. Values of ISr(0.703457 to 0.708218) and εNd(t)(-2 to 5.8) indicate that the source materials of volcanic rocks from the Tongyu copper deposit and the Xieyuguan Group originated from the metasomatised mantle wedge with possible crustal material assimilation. Most of the volcanic rock samples show good agreement with the values of typical island arc volcanic rocks in the ISr-εNd(t) diagram. The involvement of crustal-derived material in the magma of the volcanic rocks from the Tongyu copper deposit was also reflected in the zircon εHf(t) values, which range from-3.08 to 10.7, and the existence of inherited ancient xenocrystic zircon cores(2616±39 Ma and 1297±22 Ma). The mineralization of the Tongyu copper deposit shows syn-volcanic characteristics such as layered orebodies interbedded with the volcanic rock strata, thus, the zircon U-Pb age of the volcanic host rocks can approximately represent the mineralization age of the Tongyu copper deposit. Both the Meigou pluton and the volcanic host rocks were formed during the ca. 440 Ma northward subduction of the Paleo-Qinling Ocean when high oxygen fugacity aqueous hydrothermal fluid released by dehydration of the slab and the overlying sediments fluxed into the mantle wedge, triggered partial melting of the mantle wedge, and activated and extracted Cu and other ore-forming elements. The magma and ore-bearing fluid upwelled and erupted, and consequently formed the island arc volcanic rock suite and the Tongyu VHMS-type copper deposit.
文摘The Altay orogenic belt of Xinjiang in NW China represents one of the important sites of juvenile crustal growth during the Phanerozoic. However, some important issues, e.g., tectonic evolution and petrogenesis, still remain controversial. The picrites in the south margin of the Altay orogenic belt were discovered in the lower part of marine volcanic-sedimentary sequences of the northwest-striking Middle Devonian Beitashan Formation (Fm.), which consists chiefly of intermediate-basic volcanic rocks intercalated minor carbonate, siltstone and siliceous rocks. The picrites are usually highly porphyritic, and contain abundant forsteritic olivine phenocrysts with minor clinopyroxene distributed in the groundmass, which consist of olivine, clinopyroxene and plagioclase with minor Fe-Ti oxides. The MgO contents of the picrites range from 14 wt% to 22 wt% with Mg# (atomic Mg/(Mg+Fe) ratio) of 0.75-0.80. They are characterized by slightly negative Ti anomalies, remarkably negative Nb and Ta anomalies and slightly positive P and Sm anomalies with the similar abundances of HFSE as MORB on the MORB-normalized trace element patterns, all of which characterize typical island arc magmas. In combing with the southwestward migration of the magmas of the Beitashan Fm., we propose that the magmas may result from the southwestward subduction of Junggar ocean plate. The Zr/Nb ratios (23-66) of both picrites and basalts resemble the MORB (10-66), suggesting that they were derived from the MORB-like sources. However, the basalts and picrites display some distinguishable element ratios and REE patterns, e.g., Ti/V (23-35) and Zr/Sm (18-23) ratios of basalts are higher than those of picrites (14-17 and 14-15 respectively), and the basalts display flat-type REE-chondrite patterns whereas the picrites are characterized by lower total REE concentrations ((26-34)×10^-6) and slight enrichment of light REE. These distinguished geochemical characteristics could be interpreted by different partial melting degrees and mantle sources, i.e., the basalts were generated by lower partial melting of amphibole-bearing spinel peridotite which was metasomatized by fluids released from subducted oceanic crust, and the picrites were resulted from the higher degree of partial melting of metasomatized garnet peridotite under high temperature. In contrast, the andesite with significant LREE and LILE enrichment may be resulted from the partial melting of eclogites.
基金supported by the National Science Foundation of China (NSFC) project(41203039)the innovation team of ore-forming dynamics and prediction of concealed deposits, KMUST(2008)
文摘The Langdu high-K calc-alkaline intrusions are located in the Zhongdian area, which is the southern part of the Yidun island arc. These intrusive rocks consist mainly of monzonite porphyry, granodiorite, and diorite porphyry. The K20 content of majority of these rocks is greater than 3%, and, in the K20-SiO2 diagram, all the samples fall into the high-K calc-alkaline to shoshonitic fields. They are enriched in light rare earth elements (LREEs) and depleted in heavy rare earth elements (HREEs; LaN/YbN = 14.3-21.2), and show slightly negative Eu anomalies (6Eu = 0.77-1.00). These rocks have high K, Rb, Sr, and Ba contents; moderate to high enrichment of compatible elements (Cr = 36.7-79.9 ppm, Co = 9.6-16.4 ppm, and MgO = 2.2%-3.4%); low Nb, Ta, and Ti contents, and characteristic of low high field strength elements(HFSEs) versus incompatible elements ratios (Nb/Th = 0.75, Nb/La = 0.34) and incompatible elements ratios (Nb/U = 3.0 and Ce/Pb = 5.1, Ba/Rb = 12.0). These rocks exhibit restricted Sr and Nd isotopic compositions, with (87Sr/S6Sr)i values ranging from 0.7044 to 0.7069 and ENd(t) values from -2.8 to -2.2. The Sr-Nd isotope systematic and specific trace element ratios suggest that Langdu high-K calc-alkaline intrusive rocks derived from a metasomatized mantle source. The unique geochemical feature of intrusive rocks can be modeled successfully using different members of a slightly enriched mantle, a slab-derived fluid, and terrigenous sediments. It can be inferred that the degree of partial melting and the presence of specific components are temporally related to the tectonic evolution of the Zhongdian island arc. Formation of these rocks can be explained by the various degrees of melting within an ascending region of the slightly enriched mantle, triggered by the subduction of the Garz^--Litang ocean, and an interaction between the slab-derived fluid and the terrigenous sediments.
基金jointly supported by National Natural Science Foundation of China(Grant Nos.41421002,41272092,and 41030423)MOST Special Fund from the State Key Laboratory of Continental Dynamics,Northwest University,China
文摘The Tongyu copper deposit, located in the western part of the North Qinling Orogen, China, is one of several volcanic-hosted massive sulphide(VHMS) deposits with industrial value and is also a typical example of mineralization related to the subduction and metallogenesis during the Caledonian orogeny. We conducted systematic lead-sulphur isotope geochemical analyses of the Tongyu deposit to understand the possible ore-forming material sources and tectonic settings. Twenty-six sulphide samples yielded clustered δ^34SCDT values of 1.13‰-3.36‰, average 2.22‰, and show a tower-type distribution,implying that the sulphur of the Tongyu copper deposit mainly originated from a mantle source. The Pb isotope compositions of sulphides(^206Pb/^204Pb = 17.59225-18.56354, average 18.32020; ^207Pb/^204Pb =15.51770-15.69381, average 15.66217; ^208Pb/^204Pb= 37.99969-39.06953, average 38.52722) are close to the values of the volcanic host rocks(^206Pb/^204PbPb= 18.10678-18.26293, average 18.21158; ^207Pb/^204PbPb =15.63196-15.68188, average 15.65345; ^208Pb/^204PbPb= 38.43676-38.56360, average 38.49171), thus consistent with the Pb in ores and volcanic host rocks having been derived from a common source that was island-arc Pb related to oceanic crust subduction. The northward subduction of the Palaeo-Qinling oceanic crust triggered dehydration of the slab, which generated a large amount of high-oxygen-fugacity aqueous hydrothermal fluid. The fluid rose into the mantle wedge, activated and extracted metallogenic material and promoted partial melting of the mantle wedge. The magma and ore-forming fluid welled up and precipitated, finally forming the Tongyu VHMS copper deposit.
文摘Sanjiang area in Southwestern China is tectonically situated at the east end of Himalaya-Tethys tectonic domain and at the conjunction of Tethyan Mountain Chain and Circum-Pacific Mountain Chain. It is one of the key areas to understand the global tectonics and also one of gigantic metallogenic provinces in China and even in the world . Volcanism had occurred during the period of time from Proterozoic to Cenozoic . The most important and active periods of volcanism , however , are Carboniferous , Permian and Triassic . The pattern of spatial distribution of Sanjiang volcanic rocks and ophiolites can essentially be described as that several intra - continental micro-massif volcanic districts are respectively sandwiched between each two of four coupling ophioh'te - arc volcanic belts , which are successively from west to east : Dingqing - Nujiang belt , Lancangjiang belt , Jinshajiang belt and Ganzi-Litang belt . Four tectono - magma tic types of volcanic rocks have been rec-ognized in Sanjiang area as follows: mid -ocean- ridge/ para - mid - ocean - ridge type , arc type , collision type and intra - continent type . The petrotectonic assemblages within suture zones , such as oceanic assemblage , subduction - related assemblage , collision - related assemblage etc ., have been paid more attention to because of their significant importance in reconstruction of the history of Sanjiang Tethyan orogenic belt and plate tectonics .Couph'ng ophiolite - arc volcanic belt, para-mid - ocean - ridge volcanism and volcanic rocks, post -collision arc volcanism and volcanic rocks and tensional volcanic arc are newly defined in the present work . These new facts and concepts will be greatly beneficial to understanding the history of Sanjiang Tethyan plate tectonics and the complexity of the volcanism in orogenic belts and of the evolution of the continental lithosphere . A preliminary model of the evolution of Sanjiang Tethys under petrotectonic constraints was presented . It consists of the following four successive stages : (1) Late Paleozoic ocean spreading - dominant stage , (2 ) Early Mesozoic subduction and closing - dominant stage , (3) Late Mesozoic collisional orogenic stage characterized by crust shortening and compression , and (4 ) Cenozoic intra - continent orogenic stage characterized by crustal slipping - out and strike - slipping .
基金jointly funded by the national key research and development program project“Strategic Mineral Information and Metallogenic Regularity of the Tethyan Metallogenic Domain”(2021YFC2901803)a project of the National Natural Science Foundation of China entitled“Geological Structure Mapping and Regional Comparative Study of the Tethyan Tectonic Domain”(92055314),International Geoscience Programme(IGCP-741)a project initiated by the China Geological Survey(DD20221910).
文摘The porphyry copper belt in the Geza island arc in southwestern China is the only Indosinian porphyry copper metallogenic belt that has been discovered and evaluated so far.The Pulang porphyry copper deposit(also referred to as the Pulang deposit)in this area has proven copper reserves of 5.11×106 t.This deposit has been exploited on a large scale using advanced mining methods,exhibiting substantial economic benefit.Based on many research results of previous researchers and the authors’team,this study proposed the following key insights.(1)The Geza island arc was once regarded as an immature island arc with only andesites and quartz diorite porphyrites occurring.This understanding was overturned in this study.Acidic endmember components such as quartz monzonite porphyries and quartz monzonite porphyries have been identified in the Geza island arc,and the mineralization is mainly related to the magmatism of quartz monzonite porphyries.(2)Complete porphyry orebodies and large vein orebodies have developed in the Pulang deposit.Main orebody KT1 occurs in the transition area between the potassium silicate alteration zone of quartz monzonite porphyries and the sericite-quartz alteration zone.Most of them have developed in the potassium silicate alteration zone.The main orebody occurs as large lenses at the top of the hanging wall of rock bodies,with an engineering-controlled length of 1920 m and thickness of 32.5‒630.29 m(average:187.07 m).It has a copper grade of 0.21%-1.56%(average:0.42%)and proven copper resources of 5.11×10^(6) t,which are associated with 113 t of gold,1459 t of silver,and 170×10^(3) t of molybdenum.(3)Many studies on diagenetic and metallogenic chronology,isotopes,and fluid inclusions have been carried out for the Pulang deposit,including K-Ar/Ar-Ar dating of monominerals(e.g.,potassium feldspars,biotites,and amphiboles),zircon U-Pb dating,and molybdenite Re-Os dating.The results show that the porphyries in the Pulang deposit are composite plutons and can be classified into pre-mineralization quartz diorite porphyrites,quartz monzonite porphyries formed during the mineralization,and post-mineralization granite porphyries,which were formed at 223±3.7 Ma,218±4 Ma,and 207±3.9 Ma,respectively.The metallogenic age of the Pulang deposit is 213‒216 Ma.(4)The petrogeochemical characteristics show that the Pulang deposit has the characteristics of volcanic arc granites.The calculation results of trace element contents in zircons show that quartz monzonite porphyries and granite porphyries have higher oxygen fugacity.The isotopic tracing results show that the diagenetic and metallogenic materials were derived from mixed crust-and mantle-derived magmas.
文摘The Sanandaj–Sirjan Zone(SSZ),as the metamorphic-magmatic core of the Zagros Orogen in southwestern Iran,contains several styles of gold deposit of Phanerozoic age.The northern SSZ includes an ENE-trending goldfield belt.This area that encompasses the main orogenic gold deposits,e.g.,Qolqoleh,Kervian,Qabaqhlujeh,and the Barika VMS goldfield,was chosen for this research to study the spatial and temporal relationships between gold mineralization and orogenic phases.Regarding the rock unit variations,metamorphism,magmatism and the settings of the structures,the study area is divided into four distinct tectonic blocks,separated by three main NW-trending thrust faults(suture lines)including,from NE to SW,the Tamugheh,the Ebrahim Hesar and the Zagros main thrust(ZMT)faults.The area between the Tamugheh and Ebrahim Hesar faults is a tectonized/uplifted basement of accretionary wedge-originated thrust slivers,hosting the above orogenic gold mineralizations.The other area between the here termed Ebrahim Hesar fault and the ZMT is an island-arc basin,proposed here as the Sardasht–Barika zone,including the only recognized massive sulfide gold district all over the SSZ,named Barika.The Barika goldfield was metamorphosed,deformed and enriched due to the islandarc collision to the Arabian continent,before the closure of Neotethys on the eastern flank.
基金the University of Firat,Project number FUBAP-1109(Firat University Scientific Research Projects Unit).
文摘The Pertek granitoid consisting dominantly of diorite, quartz diorite, quartz monzodiorite, tonalite and lesser granite, adamellite and syenite, is considered to form the easternmost continuation of the Central Anatolian Crystalline Complex. Diorite and monzonites of this granitoid complex are cut by the granitic dykes. The Pertek granitoid, in the study area, is found in the Permo-Triassic Keban metamorphic sequence along intrusive and tectonic contacts. Along the intrusive contacts metasomatic mineralizations are common. Granitoids are, depending on the mineralogical composition, low-, middle- high-K subalkaline features. Major oxide-SiO2 variation diagrams show that fractionation (particularly plagioclase, hornblend, pyroxene and olivine fractionation) played an important role on the granitoid formation during a continuous crystallization process. Distribution of the samples from the Pertek granitoid in the tectonic setting diagrams, and their chondrite- and primordial mantle-normalized trace element patterns resemble to the of arc-type granitoids. Trace element and rare earth element compositions indicate that the magma, from which the Pertek granitoid crystallized, derived from a mantle that was enriched by the fluids derived from the subducted slab, however this magma was contaminated by the crust during its intrusion. These geochemical characteristics are also supported by the field observations. The field and geochemical characteristics of the Pertek Granitiod suggest that they are similar to the other granitoids cropping out in the central and eastern Anatolia and they form the lateral continuation of the same magmatic belt.
文摘The global seismicity shows a characteristic distance of about 23°. The middle deep and deep earthquakes in the European and Asian blocks concentrate on several zones which separate about 23° away from earch other. The shallow strong earthquakes ( M S≥7) form belts of over 20°, the ends of these belts are near the concentration points of middle deep and deep earthuakes. The Circular Pacific island arcs, volcanoes, shallow earthquakes, middle deep and deep earthquakes also show the characteristic distance of about 23°.
文摘According to the seismic data (mb≥5. 0) from 1977 to 1991 and the focal mechanisms of 68 earthquakes from 1961 to 1991, the characters of seismicity and stress field in Okinawa Trough and Ryukyu regions are discussed in this paper, and the paper suggests that: ① The Tokara Channel fault belt is a fault belt with seismicity, cutting through lithosphere. ② The different stress state in the both subducting slabs on the both sides of Tokara Channel fault belt are caused by the difference of subducting depth of the both slabs. ③ The seismicity and stress field in the Okinawa Trough and Ryukyu regions are related not only to the subduction of the Philippine Sea Plate but also to the self-expanding action of Okinawa Trough.
基金the National "973" Project (No. G1999043206) the National Scientific Project for Tackcling Key Problems(No. 2001BA609A-06-02).
文摘Based on the detailed geological investigation and record of galleries and drill holes, a new idea has been advanced that granodiorite is earlier than quartz monzodiorite porphyry. Both of them are products of two different magmatic intrusive activities. The analysis results of trace elements show that the Sr content is beyond any other crustal rock and the Th content is beyond that of Ta. The whole-rock analysis indicates that rockbody is rich in CaO and poor in K2O. In the composition of Pb istope of rockbody, the ratio of 207 Pb to 204Pb is less than 15. 60. All these show that the magma mainly comes from the upper mantle. Ti,Zr,Cr,Nb trace elements and the relation between the Gardini index(τ) and the Rittmann index(σ) indicate that the rockbodies are formed in the orogenic belt and island arc tectonic setting. The summation (2REE) and the characteristic value(m( La)/m( Yb)) of the rare earth elements show that the original rock is alkalic basalt. The analysis of the characteristic values of REE and the quantitative modeling calculation indicate that the rock-forming process is dominated by mixed crystallization. According to the analysis on the rock-forming order, magmatic source, tectonic setting and rock-forming process, combined with the achievements of regional rock-controlling structures and division of sublayer of crust, it is believed that Fenghuangshan rock body derives from the deep-seated alkalic basalt magma. The rock-forming process has undertaken sialic and calcareous assimilation and contamination of two different degrees. The rock-forming model belongs to the typical assimilation and fractional cryatalization mechanism.
基金supported by projects from the“Xingdian Talent”Youth Talent Program in Yunnan Province(No.XDYCQNRC-2022-0041)the National Natural Science Foundation of China(Nos.42162020,41873062,92055314)。
文摘In this study,we investigated Early Paleozoic magmatic rocks of the Manlai Formation exposed along the eastern margin of the Lancang terrane to better understand the tectonic history of the Proto-Tethys.We present petrological,geochemical and whole-rock Sr-Nd and zircon Hf isotopic data for basalts and gabbros sampled from the Qianmai mélange.Zircon grains from six basaltic and gabbroic samples yielded U-Pb ages of 495-482 Ma.These rocks are characterized by tholeiitic and Nbenriched compositions,with Nb/La ratios in the range of 0.38-1.38,similar to the typical Nb-enriched basalts.All the mafic rocks show slightly negative to positiveε_(Nd)(t)(-1.67 to+4.32)and zirconε_(Hf)(t)values(-7.3 to+3.8).Elemental and isotopic data suggest that the Qianmai Nb-enriched mafic rocks were mainly derived from the mixing of an OIB-like source with a subduction-modified mantle wedge source.Together with magmatic and sedimentary records of similar ages in the Lancang terrane and the Baoshan Block,our results reveal Early Paleozoic magmatic and sedimentary sequences along an active margin of the Proto-Tethys.Taking into account the recently identified Early Paleozoic ophiolitic mélange in the Yunxian-Menghai belt,we consider the Qianmai magmatic rocks to represent the products of early-stage subduction-related magmatism within a primitive island arc or fore-arc setting associated with the southward subduction of the Proto-Tethys.We infer that prolonged south-dipping subduction on the northern margin of Gondwana persisted from the Cambrian to the Late Ordovician.
基金supported by National Science Foundation of China (Grant Nos. 40372014, 40172011, 40472013, 40743016 and 41173058)the fund of Cross Century Talent of Ministry of Education of China, the Distinguished Young Scholar grant of Sichuan Province and China Scholarship Council
文摘The Yidun Island Arc in the Three Rivers (Jinsha River, Lancang River, Nujiang River) region of southwestern China is one of the most important Kuroko-type volcanogenic massive sulfide deposits (VMS) in China. Intra-arc rifting of Yidun Island occurred during the Late Carnian-Norian when VMS deposits such as the Gacun Pb-Zn-Cu deposit were formed. A bivalve fauna was found in fine-grained tuffaceous slate and in mineralized tuffaceous siltstone containing very high contents of Pb (45.01-103.37 ppm) and Zn (135.78-300.03 ppm) of the upper Tumugou Formation in the Changtai-Gacun volcanic-sedimentary rift basin. Stratigraphically, the bivalve-bearing beds are equivalents of the Gacun Pb-Zn-Cu deposits. The diversity of this bivalve fauna is very low. It consists mainly of the thin-shelled, epibyssate suspension-feeding bivalves Pergamidia eumenea and Parapergamidia changtaiensis, the burrowing large, elongated, suspension-feeding Trigonodus keuperinus and Unionites? sp., and occasional specimens of the endobyssate suspension-feeding Trigonodus? sp. and the deep burrowing suspension-feeding Pleuromya markiamensis. Individuals of the first four taxa are so abundant that the specimens are sometimes concentrated in shell beds, probably indicating a gregarious habit. This bivalve fauna is associated with internal moulds of cylindrical, slightly conical tubes most likely produced by a worm-shaped organism. Composition, morphology, diversity, and high abundance of this fauna, chemical features of the surrounding sediment, and the tectonic setting all suggest that this bivalve fauna lived in a deep-water environment in or around a hydrothermal vent system.