Abstract Two series of trans-1,4-poly(butadiene-co-isoprene) copolymers (TBIR) were prepared using the catalyst system TiCl4/MgCl2-Al(i-Bu)3 at different reaction temperatures. All dyad and triads sequence distr...Abstract Two series of trans-1,4-poly(butadiene-co-isoprene) copolymers (TBIR) were prepared using the catalyst system TiCl4/MgCl2-Al(i-Bu)3 at different reaction temperatures. All dyad and triads sequence distributions, the number-average sequence length and the sequence concentration of the copolymers were calculated according to 13C-NMR spectra. The influences of temperature and initial molar ratio of butadiene to isoprene (Bd to Ip) on the distribution of the chain segments in the TBIR copolymers were discussed. The correlation of copolymer compositions and thermal properties were also evaluated, which facilitated the understanding of controlling the degree of crystallinity and the transition tempera^re by changing Bd content and temperature.展开更多
A series of trans-1,4-butadiene/isoprene copolymers were prepared using the catalyst system TiCl4/MgCl2-Al(i- Bu)3 with bulk precipitation technology at different temperatures. Monomers reactivity ratios were calcul...A series of trans-1,4-butadiene/isoprene copolymers were prepared using the catalyst system TiCl4/MgCl2-Al(i- Bu)3 with bulk precipitation technology at different temperatures. Monomers reactivity ratios were calculated based on the Kelen-Tiid6s (K-T) method and the Mao-Huglin (M-H) method. The influence of temperature on copolymer composition and polymerization rate was discussed in detail. The increase of reaction temperature brought the decrease of butadiene reactivity ratio rBd and supplied an effective adjustment on copolymers' composition distribution.展开更多
基金financially supported by the National Basic Research Program of China(No.2015CB654700(2015CB654706))Shandong Province Natural Science Fund for Distinguished Young Scholars(No.JQ201213)the National Natural Science Foundation of China(No.51473083)
文摘Abstract Two series of trans-1,4-poly(butadiene-co-isoprene) copolymers (TBIR) were prepared using the catalyst system TiCl4/MgCl2-Al(i-Bu)3 at different reaction temperatures. All dyad and triads sequence distributions, the number-average sequence length and the sequence concentration of the copolymers were calculated according to 13C-NMR spectra. The influences of temperature and initial molar ratio of butadiene to isoprene (Bd to Ip) on the distribution of the chain segments in the TBIR copolymers were discussed. The correlation of copolymer compositions and thermal properties were also evaluated, which facilitated the understanding of controlling the degree of crystallinity and the transition tempera^re by changing Bd content and temperature.
基金financially supported by the National Key Technology R&D Program of China(No.2011BAE26B05)the Shandong Province Natural Science Fund for Distinguished Young Scholars(No.JQ201213)+2 种基金National Natural Science Foundation of China(No.21174074)Shandong Province Science and Technology Development Plan(No.2012GGA05042)the Major Projects of Independent Innovation Achievements Transformation in Shandong Province(No.2013ZHZX1A0207)
文摘A series of trans-1,4-butadiene/isoprene copolymers were prepared using the catalyst system TiCl4/MgCl2-Al(i- Bu)3 with bulk precipitation technology at different temperatures. Monomers reactivity ratios were calculated based on the Kelen-Tiid6s (K-T) method and the Mao-Huglin (M-H) method. The influence of temperature on copolymer composition and polymerization rate was discussed in detail. The increase of reaction temperature brought the decrease of butadiene reactivity ratio rBd and supplied an effective adjustment on copolymers' composition distribution.