Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carbo...Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carboxylic group content of PMA-100 and the rate of complexation reaction were measured. Effects of the mass ratio of PMA-100 to Mn(II) (n), pH, background electrolyte, etc on the rejection rate (R) and permeate flux (J) were investigated. The results show that carboxylic group content of PMA-100 is 9.5 mmol/g. The complexation of Mn(II) with PMA-100 is rapid and completed within 5 min at pH 6.0. Both R and J increase with pH increasing in the range of 2.5-7.0, and R increases with the increase of n at pH 6.0 while J is little affected. The background electrolyte leads to the decrease of R, and CaCl2 has much greater effect on R than NaCl at the same ionic strength.展开更多
The copolymerization of styrene (St) with maleic anhydride (MAh) under gamma radiation at room temperature in the presence of benzyl dithiobenzoate (BDTB) was found to display 'living' nature evidenced by cons...The copolymerization of styrene (St) with maleic anhydride (MAh) under gamma radiation at room temperature in the presence of benzyl dithiobenzoate (BDTB) was found to display 'living' nature evidenced by constant concentration of chain radicals during the copolymerization, linear evolution of molecular weights with conversion and narrow molecular weight distribution (M-w/M-n = 1.23-1.35). The compositional analysis and the sequence structural information of the copolymers obtained from DEPT (Distortionless Enhancement by Polarization Transfer) experiments demonstrate that the copolymers obtained also possess strictly alternating structure.展开更多
Ringlike polar monomer maleic, anhydride (MAn) was copolymerized with oligo (oxyethylene) methacrylate (MEO_n), and its effect on ion conduction property of the corresponding polymer-salt complexes was studied. As a c...Ringlike polar monomer maleic, anhydride (MAn) was copolymerized with oligo (oxyethylene) methacrylate (MEO_n), and its effect on ion conduction property of the corresponding polymer-salt complexes was studied. As a consequence the introduction of MAn onto polymer chain retards crystallization of the ether pendants considerably, and improves the ion conductivity to a larger degree compared with other polar groups once investigated (σ_(max),25℃=8.5×10^(-5) S/cm). The structure-ion conduction relation in the polymer-salt matrix is also analyzed macroscopically through the correspondence between composition-dependences of polymerization conversion and isothermal ion conductivity, and microscopically through the measurements of cross polarized light and electron transmission.展开更多
A new copolymer was synthesized by free radical polymerization in solution from methyl 3α-methylacryloyl-7α, 12α-dihydroxy-5β-cholan-24-oate (MACAME) and maleic anhydride (MAN). The copolymer was characterized by ...A new copolymer was synthesized by free radical polymerization in solution from methyl 3α-methylacryloyl-7α, 12α-dihydroxy-5β-cholan-24-oate (MACAME) and maleic anhydride (MAN). The copolymer was characterized by FT-IR and functional group analysis. The reactivity ratios of the two monomers were estimated [r_1 = 11.6 (MACAME), r_2 = 0.01(MAN)] by conducting a series of copolymerizations with a variety of monomer feed compositions and analyzing thecopolymer composition. Thermogravimetric and differential scanning calorimetric analyses of the samples indicate that thecopolymer possesses good thermal stability. The temperature at which the copolymer samples experienced a 10% weight loss(T_(WL)) is over 287℃, and the T_g ranged from 174 to 185℃ for the copolymers.展开更多
A preliminary study of using maleic anhydride copolymer for protein binding has been carried out. The polymeric films were prepared by compression of the purified resin and annealing the film to induce efficient back ...A preliminary study of using maleic anhydride copolymer for protein binding has been carried out. The polymeric films were prepared by compression of the purified resin and annealing the film to induce efficient back formation of the anhydride groups. The properties of the film surface were analyzed by attenuated total reflection Fourier transforms infrared spectroscopy and water contact angle measurements. The protein content was determined by Bradford assay. To obtain optimum conditions, immersion time for protein binding was examined. Results revealed that proteins can be successfully immobilized onto the film surface via covalent linkage. The efficiency of the covalent binding of the extractable protein to maleic anhydride-polyethylene film was estimated at 69.87 ug/cm2, although the film had low anhydride content (3%) on the surface.展开更多
基金Project (21176264) supported by the National Natural Science Foundation of ChinaProject (11JJ2010) supported by Hunan Provincial Natural Science Foundation of ChinaProject (LC13076) supported by Undergraduate Innovation Foundation of Central South University,China
文摘Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carboxylic group content of PMA-100 and the rate of complexation reaction were measured. Effects of the mass ratio of PMA-100 to Mn(II) (n), pH, background electrolyte, etc on the rejection rate (R) and permeate flux (J) were investigated. The results show that carboxylic group content of PMA-100 is 9.5 mmol/g. The complexation of Mn(II) with PMA-100 is rapid and completed within 5 min at pH 6.0. Both R and J increase with pH increasing in the range of 2.5-7.0, and R increases with the increase of n at pH 6.0 while J is little affected. The background electrolyte leads to the decrease of R, and CaCl2 has much greater effect on R than NaCl at the same ionic strength.
文摘The copolymerization of styrene (St) with maleic anhydride (MAh) under gamma radiation at room temperature in the presence of benzyl dithiobenzoate (BDTB) was found to display 'living' nature evidenced by constant concentration of chain radicals during the copolymerization, linear evolution of molecular weights with conversion and narrow molecular weight distribution (M-w/M-n = 1.23-1.35). The compositional analysis and the sequence structural information of the copolymers obtained from DEPT (Distortionless Enhancement by Polarization Transfer) experiments demonstrate that the copolymers obtained also possess strictly alternating structure.
文摘Ringlike polar monomer maleic, anhydride (MAn) was copolymerized with oligo (oxyethylene) methacrylate (MEO_n), and its effect on ion conduction property of the corresponding polymer-salt complexes was studied. As a consequence the introduction of MAn onto polymer chain retards crystallization of the ether pendants considerably, and improves the ion conductivity to a larger degree compared with other polar groups once investigated (σ_(max),25℃=8.5×10^(-5) S/cm). The structure-ion conduction relation in the polymer-salt matrix is also analyzed macroscopically through the correspondence between composition-dependences of polymerization conversion and isothermal ion conductivity, and microscopically through the measurements of cross polarized light and electron transmission.
基金NSERC of Canada and Nankai University for financial support. H. Li thanks the National Natural Science Foundation of China for a travel award in support of the collaborative research program (No. 20074016).
文摘A new copolymer was synthesized by free radical polymerization in solution from methyl 3α-methylacryloyl-7α, 12α-dihydroxy-5β-cholan-24-oate (MACAME) and maleic anhydride (MAN). The copolymer was characterized by FT-IR and functional group analysis. The reactivity ratios of the two monomers were estimated [r_1 = 11.6 (MACAME), r_2 = 0.01(MAN)] by conducting a series of copolymerizations with a variety of monomer feed compositions and analyzing thecopolymer composition. Thermogravimetric and differential scanning calorimetric analyses of the samples indicate that thecopolymer possesses good thermal stability. The temperature at which the copolymer samples experienced a 10% weight loss(T_(WL)) is over 287℃, and the T_g ranged from 174 to 185℃ for the copolymers.
文摘A preliminary study of using maleic anhydride copolymer for protein binding has been carried out. The polymeric films were prepared by compression of the purified resin and annealing the film to induce efficient back formation of the anhydride groups. The properties of the film surface were analyzed by attenuated total reflection Fourier transforms infrared spectroscopy and water contact angle measurements. The protein content was determined by Bradford assay. To obtain optimum conditions, immersion time for protein binding was examined. Results revealed that proteins can be successfully immobilized onto the film surface via covalent linkage. The efficiency of the covalent binding of the extractable protein to maleic anhydride-polyethylene film was estimated at 69.87 ug/cm2, although the film had low anhydride content (3%) on the surface.