Bidirectional interlinking converter(BIC)is the core equipment in a hybrid AC/DC microgrid connected between AC and DC sub-grids.However,the variety of control modes and flexible bidirectional power flow complicate th...Bidirectional interlinking converter(BIC)is the core equipment in a hybrid AC/DC microgrid connected between AC and DC sub-grids.However,the variety of control modes and flexible bidirectional power flow complicate the influence of AC faults on BIC itself and on DC sub-grid,which potentially threaten both converter safety and system reliability.This study first investigates AC fault influence on the BIC and DC bus voltage under different BIC control modes and different pre-fault operation states,by developing a mathematical model and equivalent sequence network.Second,based on the analysis results,a general accommodative current limiting strategy is proposed for BIC without limitations to specific mode or operation condition.Current amplitude is predicted and constrained according to the critical requirements to protect the BIC and relieving the AC fault influence on the DC bus voltage.Compared with conventional methods,potential current limit failure and distortions under asymmetric faults can also be avoided.Finally,experiments verify feasibility of the proposed method.展开更多
提出一种适用于V2G(Vehicle tǒgrid,VZG)和电网-蓄电池储能等系统的单级双向隔离AC-DC变换器。该变换器可实现高效率、高功率密度,及能量双向传输。该文介绍该变换器的工作原理、功率传输特性,分析并设计软开关ZVS(zero voltage switch...提出一种适用于V2G(Vehicle tǒgrid,VZG)和电网-蓄电池储能等系统的单级双向隔离AC-DC变换器。该变换器可实现高效率、高功率密度,及能量双向传输。该文介绍该变换器的工作原理、功率传输特性,分析并设计软开关ZVS(zero voltage switching,ZVS)的实现,最终可在宽增益范围和全负载情况下实现软开关,并制作一台500 W的实验样机进行验证。展开更多
文摘Bidirectional interlinking converter(BIC)is the core equipment in a hybrid AC/DC microgrid connected between AC and DC sub-grids.However,the variety of control modes and flexible bidirectional power flow complicate the influence of AC faults on BIC itself and on DC sub-grid,which potentially threaten both converter safety and system reliability.This study first investigates AC fault influence on the BIC and DC bus voltage under different BIC control modes and different pre-fault operation states,by developing a mathematical model and equivalent sequence network.Second,based on the analysis results,a general accommodative current limiting strategy is proposed for BIC without limitations to specific mode or operation condition.Current amplitude is predicted and constrained according to the critical requirements to protect the BIC and relieving the AC fault influence on the DC bus voltage.Compared with conventional methods,potential current limit failure and distortions under asymmetric faults can also be avoided.Finally,experiments verify feasibility of the proposed method.
文摘提出一种适用于V2G(Vehicle tǒgrid,VZG)和电网-蓄电池储能等系统的单级双向隔离AC-DC变换器。该变换器可实现高效率、高功率密度,及能量双向传输。该文介绍该变换器的工作原理、功率传输特性,分析并设计软开关ZVS(zero voltage switching,ZVS)的实现,最终可在宽增益范围和全负载情况下实现软开关,并制作一台500 W的实验样机进行验证。