The improvement of the seismic resilience of existing reinforced-concrete(RC) frame buildings, which is essential for the seismic resilience of a city, has become a critical issue. Although seismic isolation is an eff...The improvement of the seismic resilience of existing reinforced-concrete(RC) frame buildings, which is essential for the seismic resilience of a city, has become a critical issue. Although seismic isolation is an effective method for improving the resilient performance of such buildings, target-oriented quantitative improvements of the resilient performance of these buildings have been reported rarely. To address this gap, the seismic resilience of two existing RC frame buildings located in a high seismic intensity region of China were assessed based on the Chinese Standard for Seismic Resilience Assessment of Buildings. The critical engineering demand parameters(EDPs) affecting the seismic resilience of such buildings were identified. Subsequently, the seismic resilience of buildings retrofitted with different isolation schemes(i.e., yield ratios) were evaluated and compared, with emphasis on the relationships among yield ratios, EDPs, and levels of seismic resilience. Accordingly, to achieve the highest level of seismic resilience with respect to the Chinese standard, a yield ratio of 3% was recommended and successfully applied to the target-oriented design for the seismic-resilience improvement of an existing RC frame building. The research outcome can provide an important reference for the resilience-based retrofitting of existing RC frame buildings using seismic isolation in urban cities.展开更多
This paper introduces a design of high-precision high-voltage fiber-optic analog sig-nal isolation converter based on the technology of Voltage-to-Frequency (V/F) and Frequency-to-Voltage (F/V) conversion. It describe...This paper introduces a design of high-precision high-voltage fiber-optic analog sig-nal isolation converter based on the technology of Voltage-to-Frequency (V/F) and Frequency-to-Voltage (F/V) conversion. It describes the principle, system configuration and hardware design.展开更多
In considering the theory of structural dynamic optimization design, a design method of the structural style of ship composite brace with rigid vibration isolation mass was studied. Two kinds of structural dynamic opt...In considering the theory of structural dynamic optimization design, a design method of the structural style of ship composite brace with rigid vibration isolation mass was studied. Two kinds of structural dynamic optimization formulations minimizing the vibration acceleration of the non-pressure hull on the restraining condition of the gross weight of the ship cabin were established: 1) dynamic optimization of the sectional dimensions of the rigid vibration isolation mass in the composite brace; 2) dynamic optimization of the arranging position of the rigid vibration isolation mass. Through the optimization results, sectional dimensions and the arranging position of the rigid vibration isolation mass with better performance in reducing vibration were gained, and some reference was provided for practical engineering designs as well as enrichment of the design method of a novel ship vibration-isolation brace.展开更多
The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundation...The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundations,this study first proposes and validates the analytical formulas to approximate the bounds of the first few band gaps.In addition,the mapping relations linking the frequencies of different band gaps are presented.Furthermore,an optimal design method for these foundations is developed,which is validated through an engineering example.It is demonstrated that ensuring the superstructure’s resonance zones are completely covered by the corresponding periodic foundation’s band gaps can achieve satisfactory vibration attenuation effects,which is a good strategy for the design of rubber concrete layered periodic foundations.展开更多
A new type of impedance-balanced ship equipment foundation structure based on the principle of impedance balancing using a“discontinuous panel-vibration isolation liquid layer-foundation structure”is proposed to sol...A new type of impedance-balanced ship equipment foundation structure based on the principle of impedance balancing using a“discontinuous panel-vibration isolation liquid layer-foundation structure”is proposed to solve the problem of poor low-frequency vibration isolation of the foundation under unbalanced excitation of shipboard equipment.Based on the finite element method,the influence of characteristic parameters of the foundation panel structure on its vibration reduction characteristics under unbalanced excitation is explored.The results show that the vibration isolation level of the impedance-balanced foundation is 10 dB higher than the traditional foundation in the low-frequency band of 10-500 Hz when subjected to combined excitation of concentrated force and moment.Increasing the thickness of the impedance-balanced foundation panel can enhance the isolation effect.Increasing the number of sub-panels can effectively reduce the vibration response of the foundation panel and enhance the isolation performance of the foundation.The connection stiffness between sub-panels has a small effect on the isolation performance of the foundation.展开更多
Increasing buildings’ resistance to earthquake forces is not always a desirable solution especially for the building contents that are irreplaceable or simply more valuable than the actual primary structure (e.g. mus...Increasing buildings’ resistance to earthquake forces is not always a desirable solution especially for the building contents that are irreplaceable or simply more valuable than the actual primary structure (e.g. museums, data storage Centre’s, etc.). Base isolation and seismic dampers can be employed to minimize inter-story drifts and floor accelerations via specially designed isolation and dampers system at the structural base, or at higher levels of the superstructure. In this research, we’ll examine the response of buildings isolated using isolation system hybrid consisting of Lead-Rubber Bearings (LRB), Flat Sliding Bearings (FSB), with the addition of Rotation Fiction Damper (FD) at the base, then compare the results with buildings that have traditional foundation, in terms of the (period, displacement and distribution shear force and height of the building). It conducts TIME HISTORY seismic analysis for some varying height buildings (eight, twelve, sixteen, and twenty stories), with help of SAP2000 using an earthquake acceleration-time history for (El- Centro). The results show that the use of insulation system Hybrid has had a significant impact on improving the performance of origin in terms of reducing displacements and base shear with in-creasing height of the building, but has had a negative impact on the drift, which leads to an in-crease in drift with the increased flexibility of the building.展开更多
In the SILER (Seismic-Initiated events risk mitigation in LEad-cooled Reactors) Project, it is interesting to apply seismic isolation technology for the reactor assembly of the fixed base reactor building for ADS (...In the SILER (Seismic-Initiated events risk mitigation in LEad-cooled Reactors) Project, it is interesting to apply seismic isolation technology for the reactor assembly of the fixed base reactor building for ADS (Acceleration Driven System) heavy liquid reactor MYRRHA (Multipurpose Hybrid Research Reactor for High-Tech Application) which contains the most critical safety related components, such as reactor vessel, safe shutdown and control rod mechanisms, primary heat exchangers, primary pumps, spoliation target assembly and fuel assemblies, etc. The purpose of this paper is to investigate the possibility of an application of a partial seismic isolation to the safety critical components only, here, the reactor assembly. This paper presents the preliminary analysis results of the isolated reactor assembly and compares these with those of seismic isolated ADS reactor building. The analysis results show the reduction of the seismic acceleration response but the increase of the relative displacement for the reactor assembly. Some safety issues, especially, coolant's incapable covering the reactor core make difficult to apply for the partial seismic isolation of the ADS reactor assembly due to large relative displacement occurring the partial isolation system. Further study on the partial seismic isolation application of the critical safety components are also discussed.展开更多
The electro-optical payloads on mobile platforms generally suffer undesirable vibrations generated by maneuvers and turbulence.These vibrations are in six degrees of freedom and cause line-of-sight jitters,resulting i...The electro-optical payloads on mobile platforms generally suffer undesirable vibrations generated by maneuvers and turbulence.These vibrations are in six degrees of freedom and cause line-of-sight jitters,resulting in image blurring and loss of tracking accuracy.In this paper,a Hexapod Vibration Isolation System(HVIS)is proposed and optimized to solve this problem.The optimization aims to centralize and minimize the natural frequencies of HVIS,for expanding the vibration isolation bandwidth and improving the vibration isolation in the higher frequency band.Considering that the design space for HVIS is limited and interfered with the frames of the mobile platform,a non-collision algorithm is proposed and applied in the optimization to obtain the feasible optimal design.The optimization result shows that the natural frequency bandwidth has been reduced by 42.9%,and the maximum natural frequency is reduced by 30.2%.The prototypes of initial and optimal designs are manufactured and tested.Both simulated and experimental results demonstrate the validity of the optimization,and the optimal design provides a maximum of 15 dB more isolation in rotation direction than the initial design.展开更多
In this paper a simple preparative method for isolation and purification of ginkgolides A and B was developed,As starting material,a commercially available standardized ginkgo extract (EGb761,containing 24% flavonoid ...In this paper a simple preparative method for isolation and purification of ginkgolides A and B was developed,As starting material,a commercially available standardized ginkgo extract (EGb761,containing 24% flavonoid and 6% terpene trilactones) was used,After a pretreatment step,optimized by the uniform design method ,the concentrated intermediate extract with high content of GA and gb(+90%) was separated into the individual terpenes by preparative liquid chromatography eluted with petroleum ether-ethylacetate,Analysis of products was carried out by means of HPLC-ELSD(evaporative light -scattering detector),The results show that ginkgolides A and B are obtained in higher yield and better purity.展开更多
The objective of the whole-spacecraft vibration isolation (WSVI) system is to reduce the launch-induced dynamic loads and the quality control cost of the satellite and its components, and to increase the launch reliab...The objective of the whole-spacecraft vibration isolation (WSVI) system is to reduce the launch-induced dynamic loads and the quality control cost of the satellite and its components, and to increase the launch reliability by insertion of isolators between the satellite and the launch vehicle. A niche hybrid genetic algorithm (NHGA) is proposed to optimize stiffness and damping of the isolators. Through the comparison of the frequency response analysis results, it shows that the optimized WSVI system more effectively reduces spacecraft axial / lateral response due to the broadband structure-born launch environment. At the same time, the case of the whole-spacecraft vibration isolation optimization design demonstrates the efficiency and validity of the genetic algorithm.展开更多
A simplified approach is proposed to reduce computational cost in conventional parametric optimization of open or in-filled trenches isolating rail-induced structural vibrations. In particular, it stands on an FEM-bas...A simplified approach is proposed to reduce computational cost in conventional parametric optimization of open or in-filled trenches isolating rail-induced structural vibrations. In particular, it stands on an FEM-based hybrid optimization scheme consisting of multiple two-dimensional models and one global three-dimensional model. First, representative planar FE (finite element) models orthogonal to the rail-direction are identified. For each section, the sensitivity of the trench's design parameters, such as geometry and backfill materials, to its vibration screening effect is respectively evaluated. Second, a full trench along the rail-direction is determined according to the two-dimensional optimization result. The global performance of the optimal trench is simulated in the three-dimensional model and finally becomes a reference for practical design. By optimizing the design parameters of a case study project, the proposed approach has shown the capability of solving complex engineering problems at a minimum computational cost, therefore is applicable in determining design parameters of rail-induced vibration isolation trenches.展开更多
介绍了中国《建筑隔震设计标准》(GB/T 51408—2021)(以下简称《隔标》)和美国Minimum design loads and associated criteria for buildings and other structures(ASCE 7-16)隔震设计的相关要求,并针对基于《建筑抗震设计规范》(GB 50...介绍了中国《建筑隔震设计标准》(GB/T 51408—2021)(以下简称《隔标》)和美国Minimum design loads and associated criteria for buildings and other structures(ASCE 7-16)隔震设计的相关要求,并针对基于《建筑抗震设计规范》(GB 50011—2010)(2016年版)(以下简称《抗规》)设计的某9度区近场隔震结构,进行了两国规范的设计对比。按《抗规》设计的隔震结构,仍然能满足《隔标》的设计要求。ASCE 7-16对于隔震支座考虑了老化和环境、测试、制造等因素引起的性能参数变化,并按隔震支座的上限及下限属性进行了结构设计。基于相同地震概率水准(50年超越概率2%)的设计对比研究表明,ASCE 7-16的等效侧力法计算值高于《隔标》,按ASCE 7-16要求选择的地震波反应谱明显高于《隔标》,其时程分析结果也大于中国规范,对隔震支座的性能要求更高。展开更多
为明确MSS、Casciati和Harvey and Gavin这3种常用双向恢复力模型计算基础隔震建筑风振响应的差异,采用3种模型模拟铅芯橡胶支座在水平单向和双向位移下的恢复力,对比试验或有限元结果的差异,采用3种模型对一算例在双向风荷载下隔震层...为明确MSS、Casciati和Harvey and Gavin这3种常用双向恢复力模型计算基础隔震建筑风振响应的差异,采用3种模型模拟铅芯橡胶支座在水平单向和双向位移下的恢复力,对比试验或有限元结果的差异,采用3种模型对一算例在双向风荷载下隔震层位移、顶点位移和顶点加速度3个指标的差异进行了分析。研究表明:3种模型模拟铅芯橡胶支座在单向循环位移、方形和偏置方形位移下恢复力的趋势基本一致;而模拟圆形和偏置圆形位移时,MSS模型双向恢复力形状与有限元结果不同,不能较为准确地模拟支座双向耦合行为,Casciati模型误差稍小于Harvey and Gavin模型。Casciati模型和Harvey and Gavin模型计算风振响应基本一致;对于横风向响应均方根,3种模型差距不大;对于顺风向隔震层位移、顶点位移和顶点加速度均方根,MSS模型稍小,而对于顺、横风向隔震层位移峰值因子,MSS模型稍大;对于顺、横风向顶点加速度峰值因子和双向与单向模型顶点加速度最值比值随风速变化规律,MSS模型与其他模型差异较大。基于双向耦合效应模拟及风振响应指标的差异,建议采用Casciati模型考虑双向恢复力模型对基础隔震建筑风振响应的影响。展开更多
为解决基础隔震结构中隔震层位移需求过大的问题,提出了一种基础隔震结构(Base Isolated Structure,BIS)+串并联调谐质量阻尼器惯容器(Tuned Tandem Mass Damper-Inerter, TTMDI)的混合隔震体系。采用Bouc-Wen滞回模型模拟隔震层的非线...为解决基础隔震结构中隔震层位移需求过大的问题,提出了一种基础隔震结构(Base Isolated Structure,BIS)+串并联调谐质量阻尼器惯容器(Tuned Tandem Mass Damper-Inerter, TTMDI)的混合隔震体系。采用Bouc-Wen滞回模型模拟隔震层的非线性力-变形行为,基于随机等效线性化和模式搜索优化算法并考虑地震动模型,在频域内建立了BIS+TTMDI体系的优化设计框架。分别从鲁棒性、有效性、刚度和阻尼系数、冲程及对地震频率敏感性方面对BIS+TTMDI体系的性能进行评估,并与BIS+调谐质量阻尼器(Tuned Mass Damper, TMD)、串并联调谐质量阻尼器(TunedTandemMassDamper,TTMD)和调谐质量阻尼器惯容器(TunedMass Damper-Inerter, TMDI)进行比较。通过对近场地震动下某七层混合基础隔震结构(包括BIS+TTMDI和BIS+TMDI体系)的动力弹塑性分析,评价了其减/隔震性能。结果表明:BIS+TTMDI体系具有最好的减/隔震性能和强鲁棒性;而且在BIS+TTMDI体系中TTMDI的总阻尼需求不到BIS+TMDI体系中TMDI的一半,因而更为经济实用。展开更多
基金Beijing Natural Science Foundation under Grant No. 8192008the Scientific Research Foundation of Graduate School of Southeast University under Grant No. YBPY2021+1 种基金the Science and Technology Project of Beijing Municipal Education Commission under Grant No. KM201910016014the Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT_17R06。
文摘The improvement of the seismic resilience of existing reinforced-concrete(RC) frame buildings, which is essential for the seismic resilience of a city, has become a critical issue. Although seismic isolation is an effective method for improving the resilient performance of such buildings, target-oriented quantitative improvements of the resilient performance of these buildings have been reported rarely. To address this gap, the seismic resilience of two existing RC frame buildings located in a high seismic intensity region of China were assessed based on the Chinese Standard for Seismic Resilience Assessment of Buildings. The critical engineering demand parameters(EDPs) affecting the seismic resilience of such buildings were identified. Subsequently, the seismic resilience of buildings retrofitted with different isolation schemes(i.e., yield ratios) were evaluated and compared, with emphasis on the relationships among yield ratios, EDPs, and levels of seismic resilience. Accordingly, to achieve the highest level of seismic resilience with respect to the Chinese standard, a yield ratio of 3% was recommended and successfully applied to the target-oriented design for the seismic-resilience improvement of an existing RC frame building. The research outcome can provide an important reference for the resilience-based retrofitting of existing RC frame buildings using seismic isolation in urban cities.
基金This work was supported by the National Meg-Science Engineering Project of the Chinese Government.
文摘This paper introduces a design of high-precision high-voltage fiber-optic analog sig-nal isolation converter based on the technology of Voltage-to-Frequency (V/F) and Frequency-to-Voltage (F/V) conversion. It describes the principle, system configuration and hardware design.
基金Supported by the Shipbuilding Industry of National Defense Science and Technology Research Projects in Advance (153010110031)
文摘In considering the theory of structural dynamic optimization design, a design method of the structural style of ship composite brace with rigid vibration isolation mass was studied. Two kinds of structural dynamic optimization formulations minimizing the vibration acceleration of the non-pressure hull on the restraining condition of the gross weight of the ship cabin were established: 1) dynamic optimization of the sectional dimensions of the rigid vibration isolation mass in the composite brace; 2) dynamic optimization of the arranging position of the rigid vibration isolation mass. Through the optimization results, sectional dimensions and the arranging position of the rigid vibration isolation mass with better performance in reducing vibration were gained, and some reference was provided for practical engineering designs as well as enrichment of the design method of a novel ship vibration-isolation brace.
基金National Natural Science Foundation of China under Grant Nos.52078395 and 52178301the Open Projects Foundation of the State Key Laboratory for Health and Safety of Bridge Structures under Grant No.BHSKL19-07-GF+1 种基金the Dawn Program of Knowledge Innovation Project from the Bureau of Science and Technology of Wuhan Municipality under Grant No.2022010801020357the Science Research Foundation of Wuhan Institute of Technology under Grant No.K2021030。
文摘The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundations,this study first proposes and validates the analytical formulas to approximate the bounds of the first few band gaps.In addition,the mapping relations linking the frequencies of different band gaps are presented.Furthermore,an optimal design method for these foundations is developed,which is validated through an engineering example.It is demonstrated that ensuring the superstructure’s resonance zones are completely covered by the corresponding periodic foundation’s band gaps can achieve satisfactory vibration attenuation effects,which is a good strategy for the design of rubber concrete layered periodic foundations.
基金funded by the National Natural Science Foundation of China(Grant Numbers.U2006229 and 52101351)。
文摘A new type of impedance-balanced ship equipment foundation structure based on the principle of impedance balancing using a“discontinuous panel-vibration isolation liquid layer-foundation structure”is proposed to solve the problem of poor low-frequency vibration isolation of the foundation under unbalanced excitation of shipboard equipment.Based on the finite element method,the influence of characteristic parameters of the foundation panel structure on its vibration reduction characteristics under unbalanced excitation is explored.The results show that the vibration isolation level of the impedance-balanced foundation is 10 dB higher than the traditional foundation in the low-frequency band of 10-500 Hz when subjected to combined excitation of concentrated force and moment.Increasing the thickness of the impedance-balanced foundation panel can enhance the isolation effect.Increasing the number of sub-panels can effectively reduce the vibration response of the foundation panel and enhance the isolation performance of the foundation.The connection stiffness between sub-panels has a small effect on the isolation performance of the foundation.
文摘Increasing buildings’ resistance to earthquake forces is not always a desirable solution especially for the building contents that are irreplaceable or simply more valuable than the actual primary structure (e.g. museums, data storage Centre’s, etc.). Base isolation and seismic dampers can be employed to minimize inter-story drifts and floor accelerations via specially designed isolation and dampers system at the structural base, or at higher levels of the superstructure. In this research, we’ll examine the response of buildings isolated using isolation system hybrid consisting of Lead-Rubber Bearings (LRB), Flat Sliding Bearings (FSB), with the addition of Rotation Fiction Damper (FD) at the base, then compare the results with buildings that have traditional foundation, in terms of the (period, displacement and distribution shear force and height of the building). It conducts TIME HISTORY seismic analysis for some varying height buildings (eight, twelve, sixteen, and twenty stories), with help of SAP2000 using an earthquake acceleration-time history for (El- Centro). The results show that the use of insulation system Hybrid has had a significant impact on improving the performance of origin in terms of reducing displacements and base shear with in-creasing height of the building, but has had a negative impact on the drift, which leads to an in-crease in drift with the increased flexibility of the building.
文摘In the SILER (Seismic-Initiated events risk mitigation in LEad-cooled Reactors) Project, it is interesting to apply seismic isolation technology for the reactor assembly of the fixed base reactor building for ADS (Acceleration Driven System) heavy liquid reactor MYRRHA (Multipurpose Hybrid Research Reactor for High-Tech Application) which contains the most critical safety related components, such as reactor vessel, safe shutdown and control rod mechanisms, primary heat exchangers, primary pumps, spoliation target assembly and fuel assemblies, etc. The purpose of this paper is to investigate the possibility of an application of a partial seismic isolation to the safety critical components only, here, the reactor assembly. This paper presents the preliminary analysis results of the isolated reactor assembly and compares these with those of seismic isolated ADS reactor building. The analysis results show the reduction of the seismic acceleration response but the increase of the relative displacement for the reactor assembly. Some safety issues, especially, coolant's incapable covering the reactor core make difficult to apply for the partial seismic isolation of the ADS reactor assembly due to large relative displacement occurring the partial isolation system. Further study on the partial seismic isolation application of the critical safety components are also discussed.
基金supported by the National Key R&D Program of China(No.2021YFA1003503)。
文摘The electro-optical payloads on mobile platforms generally suffer undesirable vibrations generated by maneuvers and turbulence.These vibrations are in six degrees of freedom and cause line-of-sight jitters,resulting in image blurring and loss of tracking accuracy.In this paper,a Hexapod Vibration Isolation System(HVIS)is proposed and optimized to solve this problem.The optimization aims to centralize and minimize the natural frequencies of HVIS,for expanding the vibration isolation bandwidth and improving the vibration isolation in the higher frequency band.Considering that the design space for HVIS is limited and interfered with the frames of the mobile platform,a non-collision algorithm is proposed and applied in the optimization to obtain the feasible optimal design.The optimization result shows that the natural frequency bandwidth has been reduced by 42.9%,and the maximum natural frequency is reduced by 30.2%.The prototypes of initial and optimal designs are manufactured and tested.Both simulated and experimental results demonstrate the validity of the optimization,and the optimal design provides a maximum of 15 dB more isolation in rotation direction than the initial design.
基金Supported by the Natural Science Foundation of Tianjin(No.993606911).
文摘In this paper a simple preparative method for isolation and purification of ginkgolides A and B was developed,As starting material,a commercially available standardized ginkgo extract (EGb761,containing 24% flavonoid and 6% terpene trilactones) was used,After a pretreatment step,optimized by the uniform design method ,the concentrated intermediate extract with high content of GA and gb(+90%) was separated into the individual terpenes by preparative liquid chromatography eluted with petroleum ether-ethylacetate,Analysis of products was carried out by means of HPLC-ELSD(evaporative light -scattering detector),The results show that ginkgolides A and B are obtained in higher yield and better purity.
基金The Natural Science Foundation of China(No. 60402003)The National High Technology and Development Program of China(No. 2002AA745120)
文摘The objective of the whole-spacecraft vibration isolation (WSVI) system is to reduce the launch-induced dynamic loads and the quality control cost of the satellite and its components, and to increase the launch reliability by insertion of isolators between the satellite and the launch vehicle. A niche hybrid genetic algorithm (NHGA) is proposed to optimize stiffness and damping of the isolators. Through the comparison of the frequency response analysis results, it shows that the optimized WSVI system more effectively reduces spacecraft axial / lateral response due to the broadband structure-born launch environment. At the same time, the case of the whole-spacecraft vibration isolation optimization design demonstrates the efficiency and validity of the genetic algorithm.
文摘A simplified approach is proposed to reduce computational cost in conventional parametric optimization of open or in-filled trenches isolating rail-induced structural vibrations. In particular, it stands on an FEM-based hybrid optimization scheme consisting of multiple two-dimensional models and one global three-dimensional model. First, representative planar FE (finite element) models orthogonal to the rail-direction are identified. For each section, the sensitivity of the trench's design parameters, such as geometry and backfill materials, to its vibration screening effect is respectively evaluated. Second, a full trench along the rail-direction is determined according to the two-dimensional optimization result. The global performance of the optimal trench is simulated in the three-dimensional model and finally becomes a reference for practical design. By optimizing the design parameters of a case study project, the proposed approach has shown the capability of solving complex engineering problems at a minimum computational cost, therefore is applicable in determining design parameters of rail-induced vibration isolation trenches.
文摘介绍了中国《建筑隔震设计标准》(GB/T 51408—2021)(以下简称《隔标》)和美国Minimum design loads and associated criteria for buildings and other structures(ASCE 7-16)隔震设计的相关要求,并针对基于《建筑抗震设计规范》(GB 50011—2010)(2016年版)(以下简称《抗规》)设计的某9度区近场隔震结构,进行了两国规范的设计对比。按《抗规》设计的隔震结构,仍然能满足《隔标》的设计要求。ASCE 7-16对于隔震支座考虑了老化和环境、测试、制造等因素引起的性能参数变化,并按隔震支座的上限及下限属性进行了结构设计。基于相同地震概率水准(50年超越概率2%)的设计对比研究表明,ASCE 7-16的等效侧力法计算值高于《隔标》,按ASCE 7-16要求选择的地震波反应谱明显高于《隔标》,其时程分析结果也大于中国规范,对隔震支座的性能要求更高。
文摘为明确MSS、Casciati和Harvey and Gavin这3种常用双向恢复力模型计算基础隔震建筑风振响应的差异,采用3种模型模拟铅芯橡胶支座在水平单向和双向位移下的恢复力,对比试验或有限元结果的差异,采用3种模型对一算例在双向风荷载下隔震层位移、顶点位移和顶点加速度3个指标的差异进行了分析。研究表明:3种模型模拟铅芯橡胶支座在单向循环位移、方形和偏置方形位移下恢复力的趋势基本一致;而模拟圆形和偏置圆形位移时,MSS模型双向恢复力形状与有限元结果不同,不能较为准确地模拟支座双向耦合行为,Casciati模型误差稍小于Harvey and Gavin模型。Casciati模型和Harvey and Gavin模型计算风振响应基本一致;对于横风向响应均方根,3种模型差距不大;对于顺风向隔震层位移、顶点位移和顶点加速度均方根,MSS模型稍小,而对于顺、横风向隔震层位移峰值因子,MSS模型稍大;对于顺、横风向顶点加速度峰值因子和双向与单向模型顶点加速度最值比值随风速变化规律,MSS模型与其他模型差异较大。基于双向耦合效应模拟及风振响应指标的差异,建议采用Casciati模型考虑双向恢复力模型对基础隔震建筑风振响应的影响。
文摘为解决基础隔震结构中隔震层位移需求过大的问题,提出了一种基础隔震结构(Base Isolated Structure,BIS)+串并联调谐质量阻尼器惯容器(Tuned Tandem Mass Damper-Inerter, TTMDI)的混合隔震体系。采用Bouc-Wen滞回模型模拟隔震层的非线性力-变形行为,基于随机等效线性化和模式搜索优化算法并考虑地震动模型,在频域内建立了BIS+TTMDI体系的优化设计框架。分别从鲁棒性、有效性、刚度和阻尼系数、冲程及对地震频率敏感性方面对BIS+TTMDI体系的性能进行评估,并与BIS+调谐质量阻尼器(Tuned Mass Damper, TMD)、串并联调谐质量阻尼器(TunedTandemMassDamper,TTMD)和调谐质量阻尼器惯容器(TunedMass Damper-Inerter, TMDI)进行比较。通过对近场地震动下某七层混合基础隔震结构(包括BIS+TTMDI和BIS+TMDI体系)的动力弹塑性分析,评价了其减/隔震性能。结果表明:BIS+TTMDI体系具有最好的减/隔震性能和强鲁棒性;而且在BIS+TTMDI体系中TTMDI的总阻尼需求不到BIS+TMDI体系中TMDI的一半,因而更为经济实用。