The centromere of eukaryotic chromosomes is the crucial locus responsible for sister chromatid cohesion and for correct segregation of chromosomes to daughter cells during cell division. In the structural genomics era...The centromere of eukaryotic chromosomes is the crucial locus responsible for sister chromatid cohesion and for correct segregation of chromosomes to daughter cells during cell division. In the structural genomics era, centromeres represent the last frontiers of higher eukaryotic genomes because of their densely methylated, highly repetitive and, heterochromatic DNA (Hall et al., 2004). Although these functions are conserved among all eukaryotes, centromeric DNA sequences are evolving rapidly (Jiang et al., 2003).展开更多
基金supported by the grants from the National Natural Science Foundation of China(Nos.31576124,31071382 and 30771210)the National Basic Research Program of China(973 Program,Nos.2010CB125904 and 2013CBA01405)
文摘The centromere of eukaryotic chromosomes is the crucial locus responsible for sister chromatid cohesion and for correct segregation of chromosomes to daughter cells during cell division. In the structural genomics era, centromeres represent the last frontiers of higher eukaryotic genomes because of their densely methylated, highly repetitive and, heterochromatic DNA (Hall et al., 2004). Although these functions are conserved among all eukaryotes, centromeric DNA sequences are evolving rapidly (Jiang et al., 2003).