Two new isomeric Au complexes, Au(PPh3)(bmt), have been synthesized via the reaction of Au(PPh3)CI with 2-benzimidazolethiol (Hbmt) in dichloromethane (CH2Cl2) solution. Their crystal structures were determi...Two new isomeric Au complexes, Au(PPh3)(bmt), have been synthesized via the reaction of Au(PPh3)CI with 2-benzimidazolethiol (Hbmt) in dichloromethane (CH2Cl2) solution. Their crystal structures were determined by elemental analysis and single-crystal X-ray diffraction studies. Complex 1 crystallizes in the monoclinic system, space group C2/c with a = 19.589(2), b = 21.1368(15), c = 23.424(2) A, β = 108.346(4)°, V= 9206.1(14) A3, Mr = 1216.85, Dc = 1.756 g/cm3, μ = 6.566 mm^-1, F(000) = 4704, Z = 8, the final R = 0.0563 and wR = 0.1028 for 8125 reflections with I 〉 2σ(I). Complex 2 crystallizes in the monoclinic system, space group P21/n with a = 9.627(3), b = 21.384(8), c = 22.308(8) A, β = 92.068(6)°, V= 4590(3) A3, Mr = 1216.85, Dc = 1.761 g/cms, μ = 6.585 mm^-1, F(000) = 2352, Z = 4, the final R = 0.0500 and wR = 0.0883 for 10477 reflections with I 〉 2σ(i). X-ray diffraction studies reveal that complexes 1 and 2 both feature a 1D chain along the a axis.展开更多
Mixed symmetry states are studied in the framework of the neutron-proton interacting boson model. It is found that some of the mixed symmetry states with moderate high spins change very fast with respect to the Majora...Mixed symmetry states are studied in the framework of the neutron-proton interacting boson model. It is found that some of the mixed symmetry states with moderate high spins change very fast with respect to the Majorana interaction. Under certain conditions, they become the yrast state or yrare state. These states are difficult to decay and become very stable. This study suggests that a possible new mode of isomers may exist due to the special nature in their proton and neutron degrees of freedom.展开更多
Two isomeric metal-organic frameworks(MOFs) with 2-dimensional(2D) and 3-dimensional(3D) topologies both comprised of Cu(Ⅱ) and OTf(OTf = trifluoromethanesulfonate) ions were synthesized and characterized.The CO_2,CH...Two isomeric metal-organic frameworks(MOFs) with 2-dimensional(2D) and 3-dimensional(3D) topologies both comprised of Cu(Ⅱ) and OTf(OTf = trifluoromethanesulfonate) ions were synthesized and characterized.The CO_2,CH_4 and N_2 adsorption properties of the two isomeric MOFs were investigated from 263 K to 298 K at0.1 MPa.The results showed that the 2D MOF exhibited a higher selectivity for CO_2 from CO_2/CH_4 and CH_4from CH_4/N_2 compared to the 3D MOF,even though it possessed a lower surface area and pore volume.The higher adsorption heats of gases on the 2D MOF inferred the strong adsorption potential energy in the layered MOFs.Dynamic separation experiments using CO_2/CH_4 and CH_4/N_2 mixtures on the two MOFs proved that the2 D MOF had a longer elution time than the 3D MOF as well as better separation abilities.展开更多
In an attempt to synthesize an indole derivative,methyl 5-nitro-1H-indole-2-carb-oxylate,an isomeric change of methyl 2-[2-(4-nitrophenyl) hydrazono] propanoate from E to Z geometry was observed.The two isomers were...In an attempt to synthesize an indole derivative,methyl 5-nitro-1H-indole-2-carb-oxylate,an isomeric change of methyl 2-[2-(4-nitrophenyl) hydrazono] propanoate from E to Z geometry was observed.The two isomers were determined by single-crystal X-ray diffraction analysis.The Z isomer is stabilized in a six-membered ring conformation constructed by an intramolecular hydrogen bond.This isomeric change added a branched pathway in the mechanism of Fischer indole synthesis.展开更多
Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperature...Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperatures are challenging because of the differences in crystallizability and isomerization.This article reports two series of asymmetrically alkyl-grafted azobenzene(Azo-g),with and without a methyl group,that have an optically triggered phase change.Three exothermic modes were designed to utilize crystallization enthalpy(△H_(c))and photothermal(isomerization)energy(△H_(p))at different temperatures determined by the crystallization.Azo-g has high heat output(275-303 J g^(-1))by synchronously releasing△H_(c)and△H_(p)over a wide temperature range(-79℃to 25℃).We fabricated a new distributed energy utilization and delivery system to realize a temperature increase of 6.6℃at a temperature of-8℃.The findings offer insight into selective utilization of latent heat and isomerization energy by molecular optimization of crystallization and isomerization processes.展开更多
On the basis of Hauser-Feshbach theory and some approximations,parametrized formulae of isomeric cross section ratio including two adjustableparameters for(n,t)reaction at 14.6MeV are derived.By fitting these formulae...On the basis of Hauser-Feshbach theory and some approximations,parametrized formulae of isomeric cross section ratio including two adjustableparameters for(n,t)reaction at 14.6MeV are derived.By fitting these formulae to theavailable measured data,parameters are obtained and the systematic behaviour of theisomeric cross section ratio are studied.The isomeric cross section ratio predicted by thepresent work is in good agreement with the limited measured data.展开更多
Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,hi...Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,high yield and selectivity of fructose cannot be simultaneously obtained under mild conditions which hamper the scale of application compared with enzymatic catalysis.Herein,a Li-promoted C_(3)N_(4) catalyst was exploited which afforded an excellent fructose yield(40.3 wt%)and selectivity(99.5%)from glucose in water at 50℃,attributed to the formation of stable Li–N bond to strengthen the basic sites of catalysts.Furthermore,the so-formed N_(6)–Li–H_(2)O active site on Li–C_(3)N_(4) catalyst in aqueous phase changes the local electronic structure and strengthens the deprotonation process during glucose isomerization into fructose.The superior catalytic performance which is comparable to biological pathway suggests promising applications of lithium containing heterogeneous catalyst in biomass refinery.展开更多
The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and...The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date.展开更多
5-amino-4-nitrobenzo[1,2-c:3,4-c']bis([1,2,5]oxadiazole)1,6-dioxide(CL-18)exhibits significant potential as an initiating explosive.However,its current synthesis process remains non-scalable due to low yields and ...5-amino-4-nitrobenzo[1,2-c:3,4-c']bis([1,2,5]oxadiazole)1,6-dioxide(CL-18)exhibits significant potential as an initiating explosive.However,its current synthesis process remains non-scalable due to low yields and safety risks.In this study,we have developed a simple and safe synthetic route for CL-18.It was synthesized from 3,5-dihaloanisole in a four-step reaction with an overall yield exceeding 60%,surpassing all reported yields in the literature.Subsequently,recrystallization of CL-18 was successfully achieved by carefully selecting appropriate solvents and antisolvents to reduce its mechanical sensitivity.Ultimately,when DMF-ethanol was employed as the recrystallization solvent system,satisfactory product yield(>90%)and reduced mechanical sensitivity(IS=15 J;FS=216 N)were obtained.Additionally,CL-18 is derived from the rearrangement of oxygen atoms on i-CL-18 furoxan,and a comparative analysis of their physicochemical properties was conducted.The thermal stability of both compounds is similar,with onset decomposition temperatures recorded at 186 and 182℃respectively.Similarly,they exhibit 5 s breaking point temperatures of 236 and 237℃.Additionally,we present novel insights into the positional-isomerization-laser-ignition performance of CL-18 and its isomer i-CL-18 using laser irradiation for the first time.Remarkably,our findings demonstrate that i-CL-18 exhibits enhanced laser sensitivity,as it can be directly ignited by a 1064 nm wavelength laser,whereas CL-18 lacks this characteristic.展开更多
Hydroisomerization of n-heptane is an efficient method for producing gasoline with a high octane number.The focus of this study was to find a highly efficient catalyst that could both promote the conversion of n-hepta...Hydroisomerization of n-heptane is an efficient method for producing gasoline with a high octane number.The focus of this study was to find a highly efficient catalyst that could both promote the conversion of n-heptane and inhibit the cracking side reaction.MIL-101(Cr)is a chromium-based metal-organic framework(MOF)with good hydrothermal stability,and exhibits a three-dimensional pore structure that is similar to that of zeolites.Using phosphomolybdic acid(PMA;H3PMo12O40·xH2O)can increase the number of Brønsted acid sites on MIL-101(Cr),which contributes to improving the catalytic performance during isomerization.In this study,0.4%Pt/PMA-MIL-101(Cr)catalyst was successfully crystallized at 220℃using a hydrothermal synthetic method.The results showed that the synthesized samples were mesoporousmicroporous composite materials with the typical octahedral structure,and the MIL-101(Cr)framework was not damaged following modification with PMA.It was found that 0.4%Pt30%PMA-MIL-101(Cr)exhibited the best performance for isomerization of n-heptane,with a conversion rate and selectivity at 260°C of 47.6%and 96.6%,respectively.After five hours of reaction,the conversion rate and selectivity of the catalyst remained above 38%and 80%,respectively.展开更多
Isomerization of glucose to fructose is a fundamental and key intermediate process commonly included in the production of valuable chemicals from carbohydrates in biorefinery.Enhancement of fructose yield is a challen...Isomerization of glucose to fructose is a fundamental and key intermediate process commonly included in the production of valuable chemicals from carbohydrates in biorefinery.Enhancement of fructose yield is a challenge.In this work,Sn-doped silica nanotube(Sn-SNT)was developed as a highly efficient Lewis acid catalyst for the selective isomerization of glucose to fructose.Over Sn-SNT,69.1%fructose yield with 78.5%selectivity was obtained after reaction at 110◦C for 6 h.The sole presence of a large amount of Lewis acid sites in Sn-SNT without Brønsted acid site is one of the reasons for the high fructose yield and selectivity.Otherwise,high density of SiOH groups in Sn-SNT can ensure the presence of SiOH groups near the Sn sites,which is important for the isomerization of glucose to fructose,leading to the high fructose yield and selectivity.Furthermore,the Sn-SNT is recyclable.展开更多
Rotational isomerism effects on the optical spectra of a push-pull nonlinear optical chro-mophore 2-dicyanomethylen-3-cyano-4-f2-[E-(4-N,N-di(2-acetoxyethyl)-amino)-phenylene-(3,4-dibutyl)-thien-5]-E-vinylg-5,5-...Rotational isomerism effects on the optical spectra of a push-pull nonlinear optical chro-mophore 2-dicyanomethylen-3-cyano-4-f2-[E-(4-N,N-di(2-acetoxyethyl)-amino)-phenylene-(3,4-dibutyl)-thien-5]-E-vinylg-5,5-dimethyl-2,5-dihydrofuran (FTC) in a few solvents have been studied using the time-dependent density functional theory in combination with the polarizable continuum model. It is shown that the maximum absorption peaks of the ro-tamers have difference of nearly 30 nm both in vacuum and in solutions. The population of the rotamers changes a lot in different solvents. Based on the geometries optimized by Hartree-Fock method, the Maxwell-Boltzmann averaged absorption has been calculated and the maximum absorption peak is in good agreement with experiment. It indicates that the bond length alternation can have an important effect on the optical spectra.展开更多
Aim To modify the structure of resibufogenin by using Ginkgo bilobasuspension. Methods Young leaves of Ginkgo biloba were differentiated into callus in MS medium withonly 2,4-D as plant growth regulator. The callus wa...Aim To modify the structure of resibufogenin by using Ginkgo bilobasuspension. Methods Young leaves of Ginkgo biloba were differentiated into callus in MS medium withonly 2,4-D as plant growth regulator. The callus was then transferred aseptically to liquid MSmedium exoge-nously supplemented with appropriate concentration of 6-BA, NAA and 2,4-D to establishsuspension cell culture system. Resibufogenin was administered into the well-grown cell cultures andincubated for 4 d. The products dissolved in the liquid phase of the cultures were extracted andpurified by silica gel column chromatography gradiently eluted with petroleum ether and acetonesystem. Results One transformed product was obtained in 40% yield after 4 d incubation, which wasidentified as 3-epi-resibufogenin on the basis of FAB MS, ~1H NMR and ^(13)C NMR spectroscopicanalysis and corresponding data reported in literature. Conclusion G. biloba suspension cultures canbe used as an enzyme system to biotransform resibufogenin, an animal-originated bufadienolide, into3-epi-resibufogenin.展开更多
Endo-dicyclopentadiene was isomerized to exo-isomer by thermal treatment at evaluated temperature and pressure. The reaction temperature and pressure are key factors for this novel isomerization. This result may have ...Endo-dicyclopentadiene was isomerized to exo-isomer by thermal treatment at evaluated temperature and pressure. The reaction temperature and pressure are key factors for this novel isomerization. This result may have great potential for practical application.展开更多
A novel fibrous silica Y zeolite (HSi@Y) loaded with Pt has been studied based on its ability to produce protonic acid sites originating from molecular hydrogen. The Pt/HSi@Y was prepared using seed assisted crystalli...A novel fibrous silica Y zeolite (HSi@Y) loaded with Pt has been studied based on its ability to produce protonic acid sites originating from molecular hydrogen. The Pt/HSi@Y was prepared using seed assisted crystallization followed by protonation and Pt-loading. The product formed had a spherical morphology with bicontinuous lamellar with a diameter in the range of 500-700 nm. The catalytic activity of the Pt/HSi@Y has been assessed based on light linear alkane (C5-C7) isomerization in a micro-catalytic pulse reactor at 423-623 K. A pyridine IR study confirmed that the introduction of fibrous silica on Y zeolite increased the Lewis acid sites corresponding with the formation of extra-framework Al which led to the generation of more protonic acid sites. A hydrogen adsorbed IR study showed that the protonic acid sites which act as active sites in the isomerization were formed via dissociative-adsorption of molecular hydrogen releasing electrons to the nearby Lewis acid sites. Thus, it is suggested that the presence of Pt and HSi@Y with a high number of Lewis acid as well as weak Bronsted acid sites improved the activity and stability in C5, C6 and C7 isomerization via hydrogen spill-over mechanism.展开更多
The isomerization of n-pentane to generate high-quality blending components for clean gasoline was catalyzed by several amide-AlCl3-based ionic liquid(IL) analogs with various amides as donor molecules. The catalytic ...The isomerization of n-pentane to generate high-quality blending components for clean gasoline was catalyzed by several amide-AlCl3-based ionic liquid(IL) analogs with various amides as donor molecules. The catalytic performance of these IL analogs was evaluated in a magnetic agitated autoclave operated in batch mode.IL analog based n-methylacetamide(NMA)-AlCl3 with the amide/AlCl3 molar ratio of 0.65 showed excellent performance toward n-pentane isomerization because 0.65 NMA-1.0 AlCl3 had a low viscosity and bidentate coordination structure. The influences of reaction time, reaction temperature, and stirring speed on the catalytic performance were also investigated. Optimal reaction conditions comprised the reaction time of 1 h, the reaction temperature of 40 °C, and the stirring speed of 1500 r·min-1. Under optimal condition, the n-C5 conversion,research octane number(RON) increment, total liquids yield, and isoparaffin yield in isomerized oil were56.80%, 13.51, 89.90 wt%, and 44.32 wt%, respectively. A new mathematical model was constructed to predict the relationships among RON increment, RON increment/n-C5 conversion ratio, and n-C5 conversion. The new model indicated that an appropriate conversion per pass of n-C5 did not exceed 50%–55%. Various cycloparaffin additives were used to improve the catalytic performance of 0.65 NMA-1.0 AlCl3. The n-C5 conversion increased from 56.80% to 67.32%. The RON increment, total liquids yield, and isoparaffin yield reached 17.83, 97.36 wt%,and 63.74 wt%, respectively.展开更多
The isomerization reaction of pinene is one of the most important chemical reactions in the deep processing of pinene. The purpose of this study is to improve the performance of the metatitanic acid by composite. The ...The isomerization reaction of pinene is one of the most important chemical reactions in the deep processing of pinene. The purpose of this study is to improve the performance of the metatitanic acid by composite. The composite metatitanic acid catalyst TiM was prepared by adding Mn elements in the preparation process. The catalytic performance of TiM was evaluated. Comparison of TiM and metatitanic acid catalyst(Ti-FGP), the reaction rate of TiM catalyst was faster, and after the reaction, the yield of camphene and tricyclene increased about 1%. The catalysts were characterized by an SEM, FT-IR and laser particle size analyzer. The results show that the pinene isomerization reaction requires the synergistic action of the Br?nsted acid and Lewis acid.Br?nsted acid has great influence on the activity of catalyst, and Lewis acid has a great influence on the selectivity of the catalyst. The structure and morphology of the catalyst have a certain effect on the selectivity of pinene isomerization reaction.展开更多
Pt-(Sn,Re)/HZSM5-HMS catalysts were evaluated for n-heptane isomerization at 200–350 ℃.To characterize the catalyst,X-ray diffraction,X-ray fluorescene,Fourier transform infrared spectroscopy,ultraviolet-visible d...Pt-(Sn,Re)/HZSM5-HMS catalysts were evaluated for n-heptane isomerization at 200–350 ℃.To characterize the catalyst,X-ray diffraction,X-ray fluorescene,Fourier transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,temperature-programmed reduction of H2,temperature-programmed desorption of NH3,infrared spectroscopy of adsorbed pyridine,H2 chemisorption,nitrogen adsorption-desorption,scanning electron microscopy and thermogravimetric analysis were performed.Kinetics of n-C7 isomerization were investigated under various hydrogen and n-C7 pressures,and the effects of reaction conditions on catalytic performance were studied.The results showed that bi-and trimetallic catalysts exhibit better performance than monometallic catalysts for this reaction.For example,a maximum i-C7 selectivity( 〉74%) and multibranched isomer selectivity(40%) were observed for Pt-Sn/HZSM5-HMS at 200 ℃.展开更多
The SiO2 and g-Al2O3 supported MoOx catalyst and a MoOx-SiO2 catalyst have been studied in a conventional fixed-bed flow reactor for n-alkanes isomerization. It is shown that the MoOx-SiO2 catalyst with SiO2 framewor...The SiO2 and g-Al2O3 supported MoOx catalyst and a MoOx-SiO2 catalyst have been studied in a conventional fixed-bed flow reactor for n-alkanes isomerization. It is shown that the MoOx-SiO2 catalyst with SiO2 framework, in which the bulk MoOx phase is large enough to form typical mesoporous structure, is promising in terms of its advantages of both improved mechanical strength and high catalytic properties over the supported MoOx and bulk MoOx catalyst.展开更多
基金supported by the Youth Science Foundation of Jining University(2009QNKJ07)
文摘Two new isomeric Au complexes, Au(PPh3)(bmt), have been synthesized via the reaction of Au(PPh3)CI with 2-benzimidazolethiol (Hbmt) in dichloromethane (CH2Cl2) solution. Their crystal structures were determined by elemental analysis and single-crystal X-ray diffraction studies. Complex 1 crystallizes in the monoclinic system, space group C2/c with a = 19.589(2), b = 21.1368(15), c = 23.424(2) A, β = 108.346(4)°, V= 9206.1(14) A3, Mr = 1216.85, Dc = 1.756 g/cm3, μ = 6.566 mm^-1, F(000) = 4704, Z = 8, the final R = 0.0563 and wR = 0.1028 for 8125 reflections with I 〉 2σ(I). Complex 2 crystallizes in the monoclinic system, space group P21/n with a = 9.627(3), b = 21.384(8), c = 22.308(8) A, β = 92.068(6)°, V= 4590(3) A3, Mr = 1216.85, Dc = 1.761 g/cms, μ = 6.585 mm^-1, F(000) = 2352, Z = 4, the final R = 0.0500 and wR = 0.0883 for 10477 reflections with I 〉 2σ(i). X-ray diffraction studies reveal that complexes 1 and 2 both feature a 1D chain along the a axis.
文摘Mixed symmetry states are studied in the framework of the neutron-proton interacting boson model. It is found that some of the mixed symmetry states with moderate high spins change very fast with respect to the Majorana interaction. Under certain conditions, they become the yrast state or yrare state. These states are difficult to decay and become very stable. This study suggests that a possible new mode of isomers may exist due to the special nature in their proton and neutron degrees of freedom.
基金Supported by National Natural Science Foundation of China(No.21136007,No.51302184)the National Research Fund for Fundamental Key Projects(No.2014CB260402)
文摘Two isomeric metal-organic frameworks(MOFs) with 2-dimensional(2D) and 3-dimensional(3D) topologies both comprised of Cu(Ⅱ) and OTf(OTf = trifluoromethanesulfonate) ions were synthesized and characterized.The CO_2,CH_4 and N_2 adsorption properties of the two isomeric MOFs were investigated from 263 K to 298 K at0.1 MPa.The results showed that the 2D MOF exhibited a higher selectivity for CO_2 from CO_2/CH_4 and CH_4from CH_4/N_2 compared to the 3D MOF,even though it possessed a lower surface area and pore volume.The higher adsorption heats of gases on the 2D MOF inferred the strong adsorption potential energy in the layered MOFs.Dynamic separation experiments using CO_2/CH_4 and CH_4/N_2 mixtures on the two MOFs proved that the2 D MOF had a longer elution time than the 3D MOF as well as better separation abilities.
基金Supported by the Natural Science Foundation of Fujian Province (No. 2006 F5058)Fuzhou University (No. XRC-0527)
文摘In an attempt to synthesize an indole derivative,methyl 5-nitro-1H-indole-2-carb-oxylate,an isomeric change of methyl 2-[2-(4-nitrophenyl) hydrazono] propanoate from E to Z geometry was observed.The two isomers were determined by single-crystal X-ray diffraction analysis.The Z isomer is stabilized in a six-membered ring conformation constructed by an intramolecular hydrogen bond.This isomeric change added a branched pathway in the mechanism of Fischer indole synthesis.
基金financially supported by National Key R&D Program of China(No.2022YFB3805702)the State Key Program of National Natural Science Foundation of China(No.52130303)
文摘Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperatures are challenging because of the differences in crystallizability and isomerization.This article reports two series of asymmetrically alkyl-grafted azobenzene(Azo-g),with and without a methyl group,that have an optically triggered phase change.Three exothermic modes were designed to utilize crystallization enthalpy(△H_(c))and photothermal(isomerization)energy(△H_(p))at different temperatures determined by the crystallization.Azo-g has high heat output(275-303 J g^(-1))by synchronously releasing△H_(c)and△H_(p)over a wide temperature range(-79℃to 25℃).We fabricated a new distributed energy utilization and delivery system to realize a temperature increase of 6.6℃at a temperature of-8℃.The findings offer insight into selective utilization of latent heat and isomerization energy by molecular optimization of crystallization and isomerization processes.
文摘On the basis of Hauser-Feshbach theory and some approximations,parametrized formulae of isomeric cross section ratio including two adjustableparameters for(n,t)reaction at 14.6MeV are derived.By fitting these formulae to theavailable measured data,parameters are obtained and the systematic behaviour of theisomeric cross section ratio are studied.The isomeric cross section ratio predicted by thepresent work is in good agreement with the limited measured data.
基金The financial support from the National Natural Science Foundation of China(22278419,21978316,22108289,22172188)the Ministry of Science and Technology of China(2018YFB0604700)Suzhou Key Technology Research(Social Development)Project(2023ss06)。
文摘Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,high yield and selectivity of fructose cannot be simultaneously obtained under mild conditions which hamper the scale of application compared with enzymatic catalysis.Herein,a Li-promoted C_(3)N_(4) catalyst was exploited which afforded an excellent fructose yield(40.3 wt%)and selectivity(99.5%)from glucose in water at 50℃,attributed to the formation of stable Li–N bond to strengthen the basic sites of catalysts.Furthermore,the so-formed N_(6)–Li–H_(2)O active site on Li–C_(3)N_(4) catalyst in aqueous phase changes the local electronic structure and strengthens the deprotonation process during glucose isomerization into fructose.The superior catalytic performance which is comparable to biological pathway suggests promising applications of lithium containing heterogeneous catalyst in biomass refinery.
基金Financial support by Dual Initiative Project of Jiangsu Province and Changzhou University is gratefully acknowledgedSample analysis supported by Analysis and Testing Center,NERC Biomass of Changzhou University was also greatly acknowledged.
文摘The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date.
基金support from the National Natural Science Foundation of China(Grant No.22175160)the Science Challenge Project(Grant No.TZ2018004)。
文摘5-amino-4-nitrobenzo[1,2-c:3,4-c']bis([1,2,5]oxadiazole)1,6-dioxide(CL-18)exhibits significant potential as an initiating explosive.However,its current synthesis process remains non-scalable due to low yields and safety risks.In this study,we have developed a simple and safe synthetic route for CL-18.It was synthesized from 3,5-dihaloanisole in a four-step reaction with an overall yield exceeding 60%,surpassing all reported yields in the literature.Subsequently,recrystallization of CL-18 was successfully achieved by carefully selecting appropriate solvents and antisolvents to reduce its mechanical sensitivity.Ultimately,when DMF-ethanol was employed as the recrystallization solvent system,satisfactory product yield(>90%)and reduced mechanical sensitivity(IS=15 J;FS=216 N)were obtained.Additionally,CL-18 is derived from the rearrangement of oxygen atoms on i-CL-18 furoxan,and a comparative analysis of their physicochemical properties was conducted.The thermal stability of both compounds is similar,with onset decomposition temperatures recorded at 186 and 182℃respectively.Similarly,they exhibit 5 s breaking point temperatures of 236 and 237℃.Additionally,we present novel insights into the positional-isomerization-laser-ignition performance of CL-18 and its isomer i-CL-18 using laser irradiation for the first time.Remarkably,our findings demonstrate that i-CL-18 exhibits enhanced laser sensitivity,as it can be directly ignited by a 1064 nm wavelength laser,whereas CL-18 lacks this characteristic.
基金National Natural Science Foundation of China(Grant No.22272129).
文摘Hydroisomerization of n-heptane is an efficient method for producing gasoline with a high octane number.The focus of this study was to find a highly efficient catalyst that could both promote the conversion of n-heptane and inhibit the cracking side reaction.MIL-101(Cr)is a chromium-based metal-organic framework(MOF)with good hydrothermal stability,and exhibits a three-dimensional pore structure that is similar to that of zeolites.Using phosphomolybdic acid(PMA;H3PMo12O40·xH2O)can increase the number of Brønsted acid sites on MIL-101(Cr),which contributes to improving the catalytic performance during isomerization.In this study,0.4%Pt/PMA-MIL-101(Cr)catalyst was successfully crystallized at 220℃using a hydrothermal synthetic method.The results showed that the synthesized samples were mesoporousmicroporous composite materials with the typical octahedral structure,and the MIL-101(Cr)framework was not damaged following modification with PMA.It was found that 0.4%Pt30%PMA-MIL-101(Cr)exhibited the best performance for isomerization of n-heptane,with a conversion rate and selectivity at 260°C of 47.6%and 96.6%,respectively.After five hours of reaction,the conversion rate and selectivity of the catalyst remained above 38%and 80%,respectively.
基金the National Natural Science Foundation of China(2180212552074244)+2 种基金the Central Plains Science and Technology Innovation Leader Project(214200510006)Henan Outstanding Foreign Scientists,Workroom(GZS2018004)and the National Key R&D Program of China(2022YFC2104505)the Program of Henan Center for Oustanding Overseas Scientists(No.GZS2022007)for the financial support.
文摘Isomerization of glucose to fructose is a fundamental and key intermediate process commonly included in the production of valuable chemicals from carbohydrates in biorefinery.Enhancement of fructose yield is a challenge.In this work,Sn-doped silica nanotube(Sn-SNT)was developed as a highly efficient Lewis acid catalyst for the selective isomerization of glucose to fructose.Over Sn-SNT,69.1%fructose yield with 78.5%selectivity was obtained after reaction at 110◦C for 6 h.The sole presence of a large amount of Lewis acid sites in Sn-SNT without Brønsted acid site is one of the reasons for the high fructose yield and selectivity.Otherwise,high density of SiOH groups in Sn-SNT can ensure the presence of SiOH groups near the Sn sites,which is important for the isomerization of glucose to fructose,leading to the high fructose yield and selectivity.Furthermore,the Sn-SNT is recyclable.
基金ACKNOWLEDGMENTS This work was supported by Young Scientists Fund of the National Natural Science Foundation of China (No.10904085).
文摘Rotational isomerism effects on the optical spectra of a push-pull nonlinear optical chro-mophore 2-dicyanomethylen-3-cyano-4-f2-[E-(4-N,N-di(2-acetoxyethyl)-amino)-phenylene-(3,4-dibutyl)-thien-5]-E-vinylg-5,5-dimethyl-2,5-dihydrofuran (FTC) in a few solvents have been studied using the time-dependent density functional theory in combination with the polarizable continuum model. It is shown that the maximum absorption peaks of the ro-tamers have difference of nearly 30 nm both in vacuum and in solutions. The population of the rotamers changes a lot in different solvents. Based on the geometries optimized by Hartree-Fock method, the Maxwell-Boltzmann averaged absorption has been calculated and the maximum absorption peak is in good agreement with experiment. It indicates that the bond length alternation can have an important effect on the optical spectra.
文摘Aim To modify the structure of resibufogenin by using Ginkgo bilobasuspension. Methods Young leaves of Ginkgo biloba were differentiated into callus in MS medium withonly 2,4-D as plant growth regulator. The callus was then transferred aseptically to liquid MSmedium exoge-nously supplemented with appropriate concentration of 6-BA, NAA and 2,4-D to establishsuspension cell culture system. Resibufogenin was administered into the well-grown cell cultures andincubated for 4 d. The products dissolved in the liquid phase of the cultures were extracted andpurified by silica gel column chromatography gradiently eluted with petroleum ether and acetonesystem. Results One transformed product was obtained in 40% yield after 4 d incubation, which wasidentified as 3-epi-resibufogenin on the basis of FAB MS, ~1H NMR and ^(13)C NMR spectroscopicanalysis and corresponding data reported in literature. Conclusion G. biloba suspension cultures canbe used as an enzyme system to biotransform resibufogenin, an animal-originated bufadienolide, into3-epi-resibufogenin.
文摘Endo-dicyclopentadiene was isomerized to exo-isomer by thermal treatment at evaluated temperature and pressure. The reaction temperature and pressure are key factors for this novel isomerization. This result may have great potential for practical application.
基金supported by the Universiti Teknologi Malaysia through Research University Grant No. 13H61 and 19H04
文摘A novel fibrous silica Y zeolite (HSi@Y) loaded with Pt has been studied based on its ability to produce protonic acid sites originating from molecular hydrogen. The Pt/HSi@Y was prepared using seed assisted crystallization followed by protonation and Pt-loading. The product formed had a spherical morphology with bicontinuous lamellar with a diameter in the range of 500-700 nm. The catalytic activity of the Pt/HSi@Y has been assessed based on light linear alkane (C5-C7) isomerization in a micro-catalytic pulse reactor at 423-623 K. A pyridine IR study confirmed that the introduction of fibrous silica on Y zeolite increased the Lewis acid sites corresponding with the formation of extra-framework Al which led to the generation of more protonic acid sites. A hydrogen adsorbed IR study showed that the protonic acid sites which act as active sites in the isomerization were formed via dissociative-adsorption of molecular hydrogen releasing electrons to the nearby Lewis acid sites. Thus, it is suggested that the presence of Pt and HSi@Y with a high number of Lewis acid as well as weak Bronsted acid sites improved the activity and stability in C5, C6 and C7 isomerization via hydrogen spill-over mechanism.
基金Supported by the National Natural Science Foundation of China(21802047)the Scientific Research Funds of Huaqiao University(600005-Z17Y0073).
文摘The isomerization of n-pentane to generate high-quality blending components for clean gasoline was catalyzed by several amide-AlCl3-based ionic liquid(IL) analogs with various amides as donor molecules. The catalytic performance of these IL analogs was evaluated in a magnetic agitated autoclave operated in batch mode.IL analog based n-methylacetamide(NMA)-AlCl3 with the amide/AlCl3 molar ratio of 0.65 showed excellent performance toward n-pentane isomerization because 0.65 NMA-1.0 AlCl3 had a low viscosity and bidentate coordination structure. The influences of reaction time, reaction temperature, and stirring speed on the catalytic performance were also investigated. Optimal reaction conditions comprised the reaction time of 1 h, the reaction temperature of 40 °C, and the stirring speed of 1500 r·min-1. Under optimal condition, the n-C5 conversion,research octane number(RON) increment, total liquids yield, and isoparaffin yield in isomerized oil were56.80%, 13.51, 89.90 wt%, and 44.32 wt%, respectively. A new mathematical model was constructed to predict the relationships among RON increment, RON increment/n-C5 conversion ratio, and n-C5 conversion. The new model indicated that an appropriate conversion per pass of n-C5 did not exceed 50%–55%. Various cycloparaffin additives were used to improve the catalytic performance of 0.65 NMA-1.0 AlCl3. The n-C5 conversion increased from 56.80% to 67.32%. The RON increment, total liquids yield, and isoparaffin yield reached 17.83, 97.36 wt%,and 63.74 wt%, respectively.
基金supported by the Fujian Green Pine Co.,Ltd(NO.2016001)
文摘The isomerization reaction of pinene is one of the most important chemical reactions in the deep processing of pinene. The purpose of this study is to improve the performance of the metatitanic acid by composite. The composite metatitanic acid catalyst TiM was prepared by adding Mn elements in the preparation process. The catalytic performance of TiM was evaluated. Comparison of TiM and metatitanic acid catalyst(Ti-FGP), the reaction rate of TiM catalyst was faster, and after the reaction, the yield of camphene and tricyclene increased about 1%. The catalysts were characterized by an SEM, FT-IR and laser particle size analyzer. The results show that the pinene isomerization reaction requires the synergistic action of the Br?nsted acid and Lewis acid.Br?nsted acid has great influence on the activity of catalyst, and Lewis acid has a great influence on the selectivity of the catalyst. The structure and morphology of the catalyst have a certain effect on the selectivity of pinene isomerization reaction.
文摘Pt-(Sn,Re)/HZSM5-HMS catalysts were evaluated for n-heptane isomerization at 200–350 ℃.To characterize the catalyst,X-ray diffraction,X-ray fluorescene,Fourier transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,temperature-programmed reduction of H2,temperature-programmed desorption of NH3,infrared spectroscopy of adsorbed pyridine,H2 chemisorption,nitrogen adsorption-desorption,scanning electron microscopy and thermogravimetric analysis were performed.Kinetics of n-C7 isomerization were investigated under various hydrogen and n-C7 pressures,and the effects of reaction conditions on catalytic performance were studied.The results showed that bi-and trimetallic catalysts exhibit better performance than monometallic catalysts for this reaction.For example,a maximum i-C7 selectivity( 〉74%) and multibranched isomer selectivity(40%) were observed for Pt-Sn/HZSM5-HMS at 200 ℃.
文摘The SiO2 and g-Al2O3 supported MoOx catalyst and a MoOx-SiO2 catalyst have been studied in a conventional fixed-bed flow reactor for n-alkanes isomerization. It is shown that the MoOx-SiO2 catalyst with SiO2 framework, in which the bulk MoOx phase is large enough to form typical mesoporous structure, is promising in terms of its advantages of both improved mechanical strength and high catalytic properties over the supported MoOx and bulk MoOx catalyst.