As a base research on intelligentized search technique in seismic ruins,we study on human odor by a portable GC-MS.Qualitative analysis experiment demonstrate that isoprene,acetone and 6-methyl-5-heptene-2-one are sym...As a base research on intelligentized search technique in seismic ruins,we study on human odor by a portable GC-MS.Qualitative analysis experiment demonstrate that isoprene,acetone and 6-methyl-5-heptene-2-one are symbol of human odor.This research give important data to search survival base on artificial olfaction technique in seismic ruins.展开更多
Given the key role of biogenic volatile organic compounds(VOCs) to tropospheric chemistry and regional air quality, it is important to generate accurate VOCs emission inventories. However, only a less fraction of plan...Given the key role of biogenic volatile organic compounds(VOCs) to tropospheric chemistry and regional air quality, it is important to generate accurate VOCs emission inventories. However, only a less fraction of plant species, in temperate grassland of Inner Mongolia, has been characterized by quantitative measurements. A taxonomic methodology, which assigns VOCs measurements to unmeasured species, is an applicable and inexpensive alternation for extensive VOCs emission survey, although data are needed for additional plant families and genera to further validate the taxonomic approach in grassland vegetation. In this experiment, VOCs emission rates of 178 plant species were measured with a portable photoionization detector(PID). The results showed the most of genera and some families have consistent feature of their VOCs emission, especially for isoprene, and provide the basic premise of taxonomic methodology to develop VOCs emission inventories for temperate grassland. Then, the taxonomic methodology was introduced into assigning emission rate to other 96 species, which no measured emission rates available here. A systematical emission inventory of temperate grassland vegetation in Inner Mongolia was provided and further evidence that taxonomy relationship can serve as a useful guide for generalizing the emissions behavior of many, but not all, plant families and genera to grassland vegetation.展开更多
Plant leaves may emit a substantial amount of volatile organic compounds (VOCs) into the atmosphere, which include isoprene, terpene, alkanes, alkenes, alcohols, aldehydes, eters, esters and carboxylic acids. Furthe...Plant leaves may emit a substantial amount of volatile organic compounds (VOCs) into the atmosphere, which include isoprene, terpene, alkanes, alkenes, alcohols, aldehydes, eters, esters and carboxylic acids. Furthermore, most of these compounds actively participate in tropospheric chemistry. Great progresses have been made in linking emission of these compounds to climate. However, the VOCs emission function in plant is still not clear. Recently, some evidence has emerged that the production and the emission of VOCs, such as isoprene and monoterpenes, which account for 80% of total VOCs, exhibit plant protection against high temperatures. These increases in VOCs emissions could contribule in a significant way to plant thermotolerance. This perspective summarizes some latest literatures regarding the VOCs emission-dependent thermoprotection in plant species subjected to high temperature stress, presents the achievement in studies concerning plant VOCs emission-dependent thermotolerance, and then exhibits the proposed mechanisms of such plant thermotolerance. Finally open questions regarding the plant VOCs emission were shown, and the future researches were proposed.展开更多
In order to analyze biogenic volatile organic compounds in the atmosphere, an automated gas chromatography is developed and employed at the laboratory of National Center for Atmospheric Research (NCAR) during January ...In order to analyze biogenic volatile organic compounds in the atmosphere, an automated gas chromatography is developed and employed at the laboratory of National Center for Atmospheric Research (NCAR) during January to July, 2000. A small refrigerator was used so as to remove water in the air sample from gas line, and get accurate concentrations of volatile organic compounds. At 5°C, good water removing efficiency can be obtained at controlled flow rate. Air samples were collected around the building of Mesa Lab. of NCAR and analyzed by this gas chromatography system. This paper reports this gas chromatography system and results of air samples. The experimental results show that this gas chromatography system has a good reproducibility and stability, and main interesting volatile organic compounds such as isoprene, monoterpenes have an evident diurnal variation.展开更多
Neodymium chloride isopropanol complex (NdCl3.3'prOH) activated by modified methylaluminoxane (MMAO) was examined in isoprene polymerization in hexane, with regards to Nd compounds, aluminum (Al) compounds, [Al...Neodymium chloride isopropanol complex (NdCl3.3'prOH) activated by modified methylaluminoxane (MMAO) was examined in isoprene polymerization in hexane, with regards to Nd compounds, aluminum (Al) compounds, [Al]/[Nd] ratio, polymerization temperature and time. NdCl3'3iprOH exhibited high activity producing polymers feasting high cis-l,4 stereospecificity (〉 96%), very high molecular weight (Mn 〉 1.0 × 10^6) and fairly narrow molecular weight distribution (MWD, Mw/Mn 〈 2.0) simultaneously. In comparison, neodymium isopropoxide also showed high activity providing polymers with narrow MWD (Mw/Mn = 2.07), but somewhat low cis-1,4 content (ca. 92%), while neodymium chloride had no activity under present polymerization conditions. The Al compounds affected the polymer yield in the order of Al(i-Bu)3 〉 MMAO 〉 Al(i-Bu)2H. MMAO as cocatalyst afforded polyisoprene with high Mn over 1.0 × 10^6, whereas as stronger chain transfer agent than MMAO, AI(i-Bu)3 and AI(i-Bu)EH yielded polymers with low Mn (1.0 × 10^5-8.0 × 10^5). NdCl3·3'PrOH/MMAO catalyst showed a fairly good catalytic activity even at relatively low [Al]/[Nd] ratio of 30, and the produced polymer remained high cis-1,4 content of 95.8% along with high Mn over 1.0× 10^6 even at elevated temperatures up to 70℃. The polymerization rate is of the first order with respect to the concentration of isoprene. The mechanism of active species formation was discussed preliminarily.展开更多
Neodymium-based heterocyclic Schiff base complex was prepared and applied for the coordination polymerization of isoprene. This complex polymerized isoprene to afford products featuring high cis-1,4 stereospecificity ...Neodymium-based heterocyclic Schiff base complex was prepared and applied for the coordination polymerization of isoprene. This complex polymerized isoprene to afford products featuring high cis-1,4 stereospecificity (ca. 95%) and high molecular weight (ca, 10^5) in the presence of the triisobutyl aluminium (AliBu3) as cocatalyst, The microstructure of obtained polyisoprene was investigated by FTIR, 1^H NMR. Two different kinds of active centers in the catalyst system were examined by GPC method.展开更多
The first detailed inventory for volatile organic compounds(VOC) emissions from vegetation over Yunnan Province, China was presented. The spatially and temporally resolved inventory was developed based on a geographic...The first detailed inventory for volatile organic compounds(VOC) emissions from vegetation over Yunnan Province, China was presented. The spatially and temporally resolved inventory was developed based on a geographic information system(GIS), remote sensing(RS) data and field measurement data, such as digitized land-use data, normalized difference vegetation index(NDVI) and temperature data from direct real-time measurement. The inventory has a spatial resolution of 5 km×5 km and a time resolution of 1 h. Urban, agriculture, and natural land-use distributions in Yunnan Province were combined with biomass factors for each land-use category to produce a spatially resolved biomass inventory. A biogenic emission inventory was developed by combining the biomass inventory with hourly emission rates for tree, shrub and ground cover species of the study area. Correcting for environmental factors, including light intensity and temperature, a value of 1.1×10 12 gC for total annual biogenic VOC emissions from Yunnan Province, including 6.1×10 11 gC for isoprene, 2.1×10 11 gC for monoterpenes, and 2.6×10 11 gC for OVOC was obtained. The highest VOC emissions occurred in the northwestern, southwestern and north region of Yunnan Province. Some uncertainties were also discussed in this study.展开更多
FTIR spectroscopy in combination with a diamond tipped attenuated total reflectance (ATR) immersion probe was utilized to study in situ the copolymerization of butadiene (Bd) and isoprene (Ip) with neodymium-bas...FTIR spectroscopy in combination with a diamond tipped attenuated total reflectance (ATR) immersion probe was utilized to study in situ the copolymerization of butadiene (Bd) and isoprene (Ip) with neodymium-based catalyst in hexane. The relationship between the signal intensity of monomer and its concentration was investigated. The kinetic study of copolymerization of Bd and Ip was further conducted, and the monomer reactivity ratios were determined via in situ ATR FTIR. The signal band at 1010 cm^-1 was assigned to wagging vibration of Bd and its intensity was proportional to Bd concentration ([Bd]) in the range of 0.46-3.88 mol.L^-1. The signal bands at 890 and 989 cm^-1 were assigned to wagging vibration of Ip and the signal intensity was also proportional to Ip concentration ([Ip]) in the range of 0.08-4.73 mol·L^-1 at 890 cm^-1 and 0.08-7.49 mol·L^-1 at 989 cm^-1, respectively. Thus the signal band at 1010 cm^-1 was chosen to monitor Bd concentration and bands at 989 and 890 cm^-1 to monitor Ip concentration during the copolymerization, respectively. It was demonstrated that the conversions of Bd and Ip calculated from FTIR data agreed very well with those obtained gravimetrically. The poiymerization rates were first order with respect to both [Bd] and [Ip], respectively at different polymerization temperatures. The apparent propagation activation energy for Bd and Ip could be determined to be 54.4 kJ·mol^-1 and 57.7 kJ·mol^-1, respectively. The monomer reactivity ratios were calculated to be 1.08 for Bd (rBd) and 0.48 for IP (rIp) based on FTIR data. The Bd-Ip copolymer products with random sequence could be obtained with only one glass transition temperature.展开更多
A new kind of multifunctional macromolecular initiator with Sn-C bonds and polydiene arms was synthesized by living anionic polymerization. At first, polydiene-stannum chloride (PD-SnCl3) was prepared by the reactio...A new kind of multifunctional macromolecular initiator with Sn-C bonds and polydiene arms was synthesized by living anionic polymerization. At first, polydiene-stannum chloride (PD-SnCl3) was prepared by the reaction of n-butyl-Li (n-BuLi), stannic chloride (SnCl4) and diene. Then PD-SnCl3 was used to react with the dilithium initiator to prepare the multifunctional organic macromolecular initiators. The result suggested that the initiators had a remarkable yield by GPC, nearly 90%. By using these multifunctional macromolecular initiators, styrene and butadiene were effectively polymefized via anionic polymerization, which gave birth to novel miktoarm star copolymers. The relative molecular weight and polydispersity index, microstructure contents, copolymerization components, glass transition temperature (Tg) and morphology of the miktoarm star copolymers were investigated by GPC-UV, ~H NMR, DSC and TEM, respectively. 2009 Xing Ying Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Isoprene emissions emitted from vegetation are one of the most important precursors for tropospheric ozone and secondary organic aerosol formation. The authors estimate the biogenic isoprene emissions in China over 20...Isoprene emissions emitted from vegetation are one of the most important precursors for tropospheric ozone and secondary organic aerosol formation. The authors estimate the biogenic isoprene emissions in China over 2006-2011 using a global chemical transport model (GEOS- Chem) driven by meteorological fields from the assimilated meteorological data from MERRA. The authors incorporate three different parameterizations of isoprene-CO2 interaction into the model, and perform three sensitivity simulations to investigate the effect of CO2 inhibition on isoprene emissions for the period 2006-2011 in China. The annual isoprene emissions rate across China is simulated to be 12.62 Tg C yr-1, averaged over 2006-2011, and decreases by about 2.7%-7.4% when the CO2 inhibition schemes are included. The CO2 inhibition effect might be significant in regions where the CO2 concentration and isoprene emissions are high. Estimates of isoprene emissions can differ depending on the scheme of CO2 inhibition. According to the results obtained from the sensitivity simulations, the authors find that the CO2 inhibition effect leads to 5.6% ±2.3% reductions in annual isoprene emissions over China. The authors also find that inclusion of CO2 inhibition can substantially alter the sensitivity of isoprene emissions to the changes in meteorological conditions during the study period.展开更多
Indoor smog chamber experiments have been conducted to investigate the dynamics of sec- ondary organic aerosol (SOA) formation from OH-initiated photo-oxidation of isoprene in the presence of organic seed aerosol. T...Indoor smog chamber experiments have been conducted to investigate the dynamics of sec- ondary organic aerosol (SOA) formation from OH-initiated photo-oxidation of isoprene in the presence of organic seed aerosol. The dependence of the size distributions of SOA on both the level of pre-existing particles generated in situ from the photo-oxidation of trace hydrocarbons of indoor atmosphere and the concentration of precursor, has been investi- gated. It was shown that in the presence of high-level seed aerosol and low-level isoprene (typical urban atmospheric conditions), particle growth due to condensation of secondary organic products on pre-existing particles dominated; while in the presence of low-level seed aerosol and comparatively high-level isoprene (typical atmospheric conditions in rural re-gion), bimodal structures appeared in the size distributions of SOA, which corresponded to new particle formation resulting from homogeneous nucleation and particle growth due to condensation of secondary organic products on the per-existing particles respectively. The effects of concentrations of organic seed particles on SOA were also investigated. The particle size distributions evolutions as well as the corresponding formation rates of new particles in different conditions were also estimated.展开更多
Terpenoids are the largest family of natural products.They are made from the building block isoprene pyrophosphate(IPP),and their bioproduction using engineered cell factories has received a great deal of attention.To...Terpenoids are the largest family of natural products.They are made from the building block isoprene pyrophosphate(IPP),and their bioproduction using engineered cell factories has received a great deal of attention.To date,the insufficient metabolic supply of IPP remains a great challenge for the efficient synthesis of terpenoids.In this work,we discover that the imbalanced metabolic flux distribution between the central metabolism and the IPP supply hinders IPP accumulation in Bacillus subtilis(B.subtilis).Therefore,we remodel the IPP metabolism using a series of genetically encoded two-input-multioutput(TIMO)circuits that are responsive to pyruvate or/and malonyl-CoA,resulting in an IPP pool that is significantly increased by up to four-fold.As a proof-of-concept validation,we design an IPP metabolism remodeling strategy to improve the production of three valuable terpenoids,including menaquinone-7(MK-7,4.1-fold),lycopene(9-fold),andβ-carotene(0.9-fold).In particular,the titer of MK-7 in a 50-L bioreactor reached 1549.6 mg·L^(-1),representing the highest titer reported so far.Thus,we propose a TIMO genetic circuits-assisted IPP metabolism remodeling framework that can be generally used for the synergistic fine-tuning of complicated metabolic modules to achieve the efficient bioproduction of terpenoids.展开更多
The chemoselective C-and O-prenylation of cyclic 1,3-diketones was achieved by tuning the prenyl source and catalyst.In the presence of the solid acid Nafion,the coupling of 1,3-cyclohexanediones with isoprene gave C-...The chemoselective C-and O-prenylation of cyclic 1,3-diketones was achieved by tuning the prenyl source and catalyst.In the presence of the solid acid Nafion,the coupling of 1,3-cyclohexanediones with isoprene gave C-prenylated 5-chromenones.Alternatively,using prenol as the substrate with the Lewis acid Al Cl3 as the catalyst resulted in the exclusive O-prenylation of 1,3-cyclohexanediones.Notably,the resulting products could easily undergo aromatization to deliver prenylated resorcinols that are otherwise difficult to prepare.Our methodology is highly selective,atom-economical,operationally simple,easily scalable,and has potential applications throughout organic synthesis.展开更多
Based on the quantum chemical descriptors and the activities for isoprene polymerization of 12 neodymium carboxylates obtained by authors’earlier work,statistical analysis of data was made and a QSAR model correlatin...Based on the quantum chemical descriptors and the activities for isoprene polymerization of 12 neodymium carboxylates obtained by authors’earlier work,statistical analysis of data was made and a QSAR model correlating the quantum chemical descriptors and the activity was built with the partial least square(PLS)approach.The model is:A=51602εHOMO+6σ+12546,which indicates that the catalytic activity A is positively correlated with the HOMO energyεHOMOand the ligand polarizabilityσ,with the contribution ofσbeing larger,εHOMO smaller.The model’s coefficient of determination r^2=0.96 and that of cross validation q^2=0.94,both being close to 1,which means that its quality is well and its predictive power is strong.Analysis of the modeling process and the resulted QSAR model,together with the interpretation of the model’s mechanism,also shows that the model obtained from this study is valid and reliable.According to the QSAR model,the mechanism of catalyst activity can be interpreted as that neodymium carboxylates with higher HOMO energy and larger ligand polarizability are easier to react with the co-catalysts so as to produce more active and stable centers of catalyst,resulting in a higher activity.展开更多
Biogenic isoprene emissions have been believed to be from only photosynthesis processes in plant. However nocturnal isoprene emission from pine is detected. And by feeding 13CO2 to plants, it is found that both photos...Biogenic isoprene emissions have been believed to be from only photosynthesis processes in plant. However nocturnal isoprene emission from pine is detected. And by feeding 13CO2 to plants, it is found that both photosynthesis pathway and light independent processes contribute to isoprene emissions.展开更多
Urban green areas have an important implication on the local climate. A cross-linkage of many small green spaces could result in decreasing the effect of the urban heat island, but also increase people’s thermal comf...Urban green areas have an important implication on the local climate. A cross-linkage of many small green spaces could result in decreasing the effect of the urban heat island, but also increase people’s thermal comfort. By the way, urban green areas could also induce a positive effect on the local urban air quality. But attention has to be paid to the assortment of the tree species. More or less all tree species are emitting biogenic volatile organic compounds in different concentration. These serve as precursors for the formation of ozone near the ground. So near surface ozone has the ability to react with different particulate matters and could become toxic, due to oxidation or nitrification. This causes inflammations and inspired allergens may increase the risk of a respiratory disease. Therefore, an analysis and assessment of the urban green area air quality could help to make a statement about the recreational effect of these areas in dependence of the leading vegetation and for that matter for the exposure to ozone. By the help of these the results can be used as a guidance of urban planning taking into account the influence of biogenic emission as a function of actual weather conditions.展开更多
Twenty three kinds of typical plants in Xishuangbanna, the tropical area of southwestern China, were screened to estimate the emission rates of isoprene and monoterpenes by adopting bag enclosure and curette sampling ...Twenty three kinds of typical plants in Xishuangbanna, the tropical area of southwestern China, were screened to estimate the emission rates of isoprene and monoterpenes by adopting bag enclosure and curette sampling methods followed by a GC FID analysis. It was found that the Ficus species were mainly emitting isoprene and most tropical vegetations were mainly releasing monoterpenes. The results also showed that the emissions of isoprene were affected by both temperature and PAR(Photosynthetic Active Radiation), while monoterpene emissions were mainly temperature dependent.展开更多
The kinetic study of the anionic polymerization of isoprene is carried out in tetrahy-drofuran(THF), using n-BuLi as initiator. Kinetic parameters are obtained, which comprise chain propagation rate constant, kp, and ...The kinetic study of the anionic polymerization of isoprene is carried out in tetrahy-drofuran(THF), using n-BuLi as initiator. Kinetic parameters are obtained, which comprise chain propagation rate constant, kp, and partial rate constants, k3 and k4 + k5, propagation orders with respect to monomer and active species concentrations, α and β, real activation energy, E, as well as partial activation energies, E3 and E4+5 and so on. The relationship between the microstruc-ture of polyisoprene and the ratio of [THF]/[n-BuLi] has been investigated. On the basis of the studies mentioned above, a reasonable mechanism of the anionic polymerization of isoprene in THF is proposed.展开更多
Bifunctional alkoxyamine bis-TIPNO derived from 2,2,5-trimethyl-4-phenyl-3-azahexane-3-oxyl (TIPNO) and α, ω-alkyl bromide by atom transfer radical addition(ATRA) was employed as “biradical initiator” for nitr...Bifunctional alkoxyamine bis-TIPNO derived from 2,2,5-trimethyl-4-phenyl-3-azahexane-3-oxyl (TIPNO) and α, ω-alkyl bromide by atom transfer radical addition(ATRA) was employed as “biradical initiator” for nitroxide-mediated radical polymerization(NMRP) of isoprene and styrene. The kinetics study for the polymerization of styrene at different time showed living features. The poly(styrene-b-isoprene-b-styrene) (SIS) copolymers have two glass transition temperatures, indicating the immiscibility of the corresponding blocks.展开更多
Photooxidation of isoprene leads to the formation of secondary organic aerosol (SOA). In this study, the chemical composition of SOA formed from OH-initiated photooxidation of isoprene has been investigated with gas...Photooxidation of isoprene leads to the formation of secondary organic aerosol (SOA). In this study, the chemical composition of SOA formed from OH-initiated photooxidation of isoprene has been investigated with gas chromatography/mass spectrometry (GC/MS) and a home-made aerosol time-of-fiight mass spectrometer. Sampling particles generated in a home-made smog chamber. The size distribution of SOA particles was detected by a TSI 3321 aerodynamic particle size spectrometer in real time. Results showed that SOA created by isoprene photooxidation was predominantly in the form of fine particles, which have diameters less than 2.5 μm. The obtained mass spectra of individual particles show that products of the OH-initiated oxidation of isoprene contain methyl vinyl ketone, methacrolein, formaldehyde, and some other hydroxycarbonyls. The possible reaction mechanisms leading to these products were also discussed.展开更多
文摘As a base research on intelligentized search technique in seismic ruins,we study on human odor by a portable GC-MS.Qualitative analysis experiment demonstrate that isoprene,acetone and 6-methyl-5-heptene-2-one are symbol of human odor.This research give important data to search survival base on artificial olfaction technique in seismic ruins.
文摘Given the key role of biogenic volatile organic compounds(VOCs) to tropospheric chemistry and regional air quality, it is important to generate accurate VOCs emission inventories. However, only a less fraction of plant species, in temperate grassland of Inner Mongolia, has been characterized by quantitative measurements. A taxonomic methodology, which assigns VOCs measurements to unmeasured species, is an applicable and inexpensive alternation for extensive VOCs emission survey, although data are needed for additional plant families and genera to further validate the taxonomic approach in grassland vegetation. In this experiment, VOCs emission rates of 178 plant species were measured with a portable photoionization detector(PID). The results showed the most of genera and some families have consistent feature of their VOCs emission, especially for isoprene, and provide the basic premise of taxonomic methodology to develop VOCs emission inventories for temperate grassland. Then, the taxonomic methodology was introduced into assigning emission rate to other 96 species, which no measured emission rates available here. A systematical emission inventory of temperate grassland vegetation in Inner Mongolia was provided and further evidence that taxonomy relationship can serve as a useful guide for generalizing the emissions behavior of many, but not all, plant families and genera to grassland vegetation.
文摘Plant leaves may emit a substantial amount of volatile organic compounds (VOCs) into the atmosphere, which include isoprene, terpene, alkanes, alkenes, alcohols, aldehydes, eters, esters and carboxylic acids. Furthermore, most of these compounds actively participate in tropospheric chemistry. Great progresses have been made in linking emission of these compounds to climate. However, the VOCs emission function in plant is still not clear. Recently, some evidence has emerged that the production and the emission of VOCs, such as isoprene and monoterpenes, which account for 80% of total VOCs, exhibit plant protection against high temperatures. These increases in VOCs emissions could contribule in a significant way to plant thermotolerance. This perspective summarizes some latest literatures regarding the VOCs emission-dependent thermoprotection in plant species subjected to high temperature stress, presents the achievement in studies concerning plant VOCs emission-dependent thermotolerance, and then exhibits the proposed mechanisms of such plant thermotolerance. Finally open questions regarding the plant VOCs emission were shown, and the future researches were proposed.
基金This work is supported by Knowledge Creative Project (KZCX2-204) of Chinese Academy of Sci-ences and the National Natural Scienc
文摘In order to analyze biogenic volatile organic compounds in the atmosphere, an automated gas chromatography is developed and employed at the laboratory of National Center for Atmospheric Research (NCAR) during January to July, 2000. A small refrigerator was used so as to remove water in the air sample from gas line, and get accurate concentrations of volatile organic compounds. At 5°C, good water removing efficiency can be obtained at controlled flow rate. Air samples were collected around the building of Mesa Lab. of NCAR and analyzed by this gas chromatography system. This paper reports this gas chromatography system and results of air samples. The experimental results show that this gas chromatography system has a good reproducibility and stability, and main interesting volatile organic compounds such as isoprene, monoterpenes have an evident diurnal variation.
基金supported by the Administration of Science and Technology of Jilin Province,China (No.200505254)
文摘Neodymium chloride isopropanol complex (NdCl3.3'prOH) activated by modified methylaluminoxane (MMAO) was examined in isoprene polymerization in hexane, with regards to Nd compounds, aluminum (Al) compounds, [Al]/[Nd] ratio, polymerization temperature and time. NdCl3'3iprOH exhibited high activity producing polymers feasting high cis-l,4 stereospecificity (〉 96%), very high molecular weight (Mn 〉 1.0 × 10^6) and fairly narrow molecular weight distribution (MWD, Mw/Mn 〈 2.0) simultaneously. In comparison, neodymium isopropoxide also showed high activity providing polymers with narrow MWD (Mw/Mn = 2.07), but somewhat low cis-1,4 content (ca. 92%), while neodymium chloride had no activity under present polymerization conditions. The Al compounds affected the polymer yield in the order of Al(i-Bu)3 〉 MMAO 〉 Al(i-Bu)2H. MMAO as cocatalyst afforded polyisoprene with high Mn over 1.0 × 10^6, whereas as stronger chain transfer agent than MMAO, AI(i-Bu)3 and AI(i-Bu)EH yielded polymers with low Mn (1.0 × 10^5-8.0 × 10^5). NdCl3·3'PrOH/MMAO catalyst showed a fairly good catalytic activity even at relatively low [Al]/[Nd] ratio of 30, and the produced polymer remained high cis-1,4 content of 95.8% along with high Mn over 1.0× 10^6 even at elevated temperatures up to 70℃. The polymerization rate is of the first order with respect to the concentration of isoprene. The mechanism of active species formation was discussed preliminarily.
基金The authors are indebted to the financial supports of the National Natural Science Foundation of China (No.20774078 and the Key Program No.20434020);the Special Funds for Major Basic Research Projects (G2005CB623802).
文摘Neodymium-based heterocyclic Schiff base complex was prepared and applied for the coordination polymerization of isoprene. This complex polymerized isoprene to afford products featuring high cis-1,4 stereospecificity (ca. 95%) and high molecular weight (ca, 10^5) in the presence of the triisobutyl aluminium (AliBu3) as cocatalyst, The microstructure of obtained polyisoprene was investigated by FTIR, 1^H NMR. Two different kinds of active centers in the catalyst system were examined by GPC method.
基金The National Natural Science Foundation of China(No. 40075027 40375038)
文摘The first detailed inventory for volatile organic compounds(VOC) emissions from vegetation over Yunnan Province, China was presented. The spatially and temporally resolved inventory was developed based on a geographic information system(GIS), remote sensing(RS) data and field measurement data, such as digitized land-use data, normalized difference vegetation index(NDVI) and temperature data from direct real-time measurement. The inventory has a spatial resolution of 5 km×5 km and a time resolution of 1 h. Urban, agriculture, and natural land-use distributions in Yunnan Province were combined with biomass factors for each land-use category to produce a spatially resolved biomass inventory. A biogenic emission inventory was developed by combining the biomass inventory with hourly emission rates for tree, shrub and ground cover species of the study area. Correcting for environmental factors, including light intensity and temperature, a value of 1.1×10 12 gC for total annual biogenic VOC emissions from Yunnan Province, including 6.1×10 11 gC for isoprene, 2.1×10 11 gC for monoterpenes, and 2.6×10 11 gC for OVOC was obtained. The highest VOC emissions occurred in the northwestern, southwestern and north region of Yunnan Province. Some uncertainties were also discussed in this study.
基金supported by the National 863 program(No.2006AA03Z552)the National Natural Science Foundation of China(No.50903003)China Petroleum Chemical Corp.(SINOPEC)and Program for Changjiang Scholars and Innovative Research Teams in Universities(IRT0706)
文摘FTIR spectroscopy in combination with a diamond tipped attenuated total reflectance (ATR) immersion probe was utilized to study in situ the copolymerization of butadiene (Bd) and isoprene (Ip) with neodymium-based catalyst in hexane. The relationship between the signal intensity of monomer and its concentration was investigated. The kinetic study of copolymerization of Bd and Ip was further conducted, and the monomer reactivity ratios were determined via in situ ATR FTIR. The signal band at 1010 cm^-1 was assigned to wagging vibration of Bd and its intensity was proportional to Bd concentration ([Bd]) in the range of 0.46-3.88 mol.L^-1. The signal bands at 890 and 989 cm^-1 were assigned to wagging vibration of Ip and the signal intensity was also proportional to Ip concentration ([Ip]) in the range of 0.08-4.73 mol·L^-1 at 890 cm^-1 and 0.08-7.49 mol·L^-1 at 989 cm^-1, respectively. Thus the signal band at 1010 cm^-1 was chosen to monitor Bd concentration and bands at 989 and 890 cm^-1 to monitor Ip concentration during the copolymerization, respectively. It was demonstrated that the conversions of Bd and Ip calculated from FTIR data agreed very well with those obtained gravimetrically. The poiymerization rates were first order with respect to both [Bd] and [Ip], respectively at different polymerization temperatures. The apparent propagation activation energy for Bd and Ip could be determined to be 54.4 kJ·mol^-1 and 57.7 kJ·mol^-1, respectively. The monomer reactivity ratios were calculated to be 1.08 for Bd (rBd) and 0.48 for IP (rIp) based on FTIR data. The Bd-Ip copolymer products with random sequence could be obtained with only one glass transition temperature.
基金supported by National Natural Science Foundation of China(No.50573005)
文摘A new kind of multifunctional macromolecular initiator with Sn-C bonds and polydiene arms was synthesized by living anionic polymerization. At first, polydiene-stannum chloride (PD-SnCl3) was prepared by the reaction of n-butyl-Li (n-BuLi), stannic chloride (SnCl4) and diene. Then PD-SnCl3 was used to react with the dilithium initiator to prepare the multifunctional organic macromolecular initiators. The result suggested that the initiators had a remarkable yield by GPC, nearly 90%. By using these multifunctional macromolecular initiators, styrene and butadiene were effectively polymefized via anionic polymerization, which gave birth to novel miktoarm star copolymers. The relative molecular weight and polydispersity index, microstructure contents, copolymerization components, glass transition temperature (Tg) and morphology of the miktoarm star copolymers were investigated by GPC-UV, ~H NMR, DSC and TEM, respectively. 2009 Xing Ying Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金supported by the National Natural Science Foundation of China[grant number 41405138]the National High Technology Research and Development Program of China[grant number 2013AA122002]
文摘Isoprene emissions emitted from vegetation are one of the most important precursors for tropospheric ozone and secondary organic aerosol formation. The authors estimate the biogenic isoprene emissions in China over 2006-2011 using a global chemical transport model (GEOS- Chem) driven by meteorological fields from the assimilated meteorological data from MERRA. The authors incorporate three different parameterizations of isoprene-CO2 interaction into the model, and perform three sensitivity simulations to investigate the effect of CO2 inhibition on isoprene emissions for the period 2006-2011 in China. The annual isoprene emissions rate across China is simulated to be 12.62 Tg C yr-1, averaged over 2006-2011, and decreases by about 2.7%-7.4% when the CO2 inhibition schemes are included. The CO2 inhibition effect might be significant in regions where the CO2 concentration and isoprene emissions are high. Estimates of isoprene emissions can differ depending on the scheme of CO2 inhibition. According to the results obtained from the sensitivity simulations, the authors find that the CO2 inhibition effect leads to 5.6% ±2.3% reductions in annual isoprene emissions over China. The authors also find that inclusion of CO2 inhibition can substantially alter the sensitivity of isoprene emissions to the changes in meteorological conditions during the study period.
文摘Indoor smog chamber experiments have been conducted to investigate the dynamics of sec- ondary organic aerosol (SOA) formation from OH-initiated photo-oxidation of isoprene in the presence of organic seed aerosol. The dependence of the size distributions of SOA on both the level of pre-existing particles generated in situ from the photo-oxidation of trace hydrocarbons of indoor atmosphere and the concentration of precursor, has been investi- gated. It was shown that in the presence of high-level seed aerosol and low-level isoprene (typical urban atmospheric conditions), particle growth due to condensation of secondary organic products on pre-existing particles dominated; while in the presence of low-level seed aerosol and comparatively high-level isoprene (typical atmospheric conditions in rural re-gion), bimodal structures appeared in the size distributions of SOA, which corresponded to new particle formation resulting from homogeneous nucleation and particle growth due to condensation of secondary organic products on the per-existing particles respectively. The effects of concentrations of organic seed particles on SOA were also investigated. The particle size distributions evolutions as well as the corresponding formation rates of new particles in different conditions were also estimated.
基金financially supported by the National Natural Science Foundation of China(32070085,32200050,31871784,and 32021005)the Natural Science Foundation of Jiangsu Province(BK20221079)+4 种基金National Postdoctoral Program for Innovative Talents(BX20220136)the Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB498)the Fundamental Research Funds for the Central Universities(JUSRP52019A,JUSRP121010 and JUSRP221013)National Key Research and Development Program of China(2020YFA0908300)Postgraduate Research&Practice Innovation Program of Jiangsu Provence(KYCX18_1797)。
文摘Terpenoids are the largest family of natural products.They are made from the building block isoprene pyrophosphate(IPP),and their bioproduction using engineered cell factories has received a great deal of attention.To date,the insufficient metabolic supply of IPP remains a great challenge for the efficient synthesis of terpenoids.In this work,we discover that the imbalanced metabolic flux distribution between the central metabolism and the IPP supply hinders IPP accumulation in Bacillus subtilis(B.subtilis).Therefore,we remodel the IPP metabolism using a series of genetically encoded two-input-multioutput(TIMO)circuits that are responsive to pyruvate or/and malonyl-CoA,resulting in an IPP pool that is significantly increased by up to four-fold.As a proof-of-concept validation,we design an IPP metabolism remodeling strategy to improve the production of three valuable terpenoids,including menaquinone-7(MK-7,4.1-fold),lycopene(9-fold),andβ-carotene(0.9-fold).In particular,the titer of MK-7 in a 50-L bioreactor reached 1549.6 mg·L^(-1),representing the highest titer reported so far.Thus,we propose a TIMO genetic circuits-assisted IPP metabolism remodeling framework that can be generally used for the synergistic fine-tuning of complicated metabolic modules to achieve the efficient bioproduction of terpenoids.
文摘The chemoselective C-and O-prenylation of cyclic 1,3-diketones was achieved by tuning the prenyl source and catalyst.In the presence of the solid acid Nafion,the coupling of 1,3-cyclohexanediones with isoprene gave C-prenylated 5-chromenones.Alternatively,using prenol as the substrate with the Lewis acid Al Cl3 as the catalyst resulted in the exclusive O-prenylation of 1,3-cyclohexanediones.Notably,the resulting products could easily undergo aromatization to deliver prenylated resorcinols that are otherwise difficult to prepare.Our methodology is highly selective,atom-economical,operationally simple,easily scalable,and has potential applications throughout organic synthesis.
基金Finacial support from the National Natural Science Foundation of China(21676139)。
文摘Based on the quantum chemical descriptors and the activities for isoprene polymerization of 12 neodymium carboxylates obtained by authors’earlier work,statistical analysis of data was made and a QSAR model correlating the quantum chemical descriptors and the activity was built with the partial least square(PLS)approach.The model is:A=51602εHOMO+6σ+12546,which indicates that the catalytic activity A is positively correlated with the HOMO energyεHOMOand the ligand polarizabilityσ,with the contribution ofσbeing larger,εHOMO smaller.The model’s coefficient of determination r^2=0.96 and that of cross validation q^2=0.94,both being close to 1,which means that its quality is well and its predictive power is strong.Analysis of the modeling process and the resulted QSAR model,together with the interpretation of the model’s mechanism,also shows that the model obtained from this study is valid and reliable.According to the QSAR model,the mechanism of catalyst activity can be interpreted as that neodymium carboxylates with higher HOMO energy and larger ligand polarizability are easier to react with the co-catalysts so as to produce more active and stable centers of catalyst,resulting in a higher activity.
文摘Biogenic isoprene emissions have been believed to be from only photosynthesis processes in plant. However nocturnal isoprene emission from pine is detected. And by feeding 13CO2 to plants, it is found that both photosynthesis pathway and light independent processes contribute to isoprene emissions.
文摘Urban green areas have an important implication on the local climate. A cross-linkage of many small green spaces could result in decreasing the effect of the urban heat island, but also increase people’s thermal comfort. By the way, urban green areas could also induce a positive effect on the local urban air quality. But attention has to be paid to the assortment of the tree species. More or less all tree species are emitting biogenic volatile organic compounds in different concentration. These serve as precursors for the formation of ozone near the ground. So near surface ozone has the ability to react with different particulate matters and could become toxic, due to oxidation or nitrification. This causes inflammations and inspired allergens may increase the risk of a respiratory disease. Therefore, an analysis and assessment of the urban green area air quality could help to make a statement about the recreational effect of these areas in dependence of the leading vegetation and for that matter for the exposure to ozone. By the help of these the results can be used as a guidance of urban planning taking into account the influence of biogenic emission as a function of actual weather conditions.
文摘Twenty three kinds of typical plants in Xishuangbanna, the tropical area of southwestern China, were screened to estimate the emission rates of isoprene and monoterpenes by adopting bag enclosure and curette sampling methods followed by a GC FID analysis. It was found that the Ficus species were mainly emitting isoprene and most tropical vegetations were mainly releasing monoterpenes. The results also showed that the emissions of isoprene were affected by both temperature and PAR(Photosynthetic Active Radiation), while monoterpene emissions were mainly temperature dependent.
文摘The kinetic study of the anionic polymerization of isoprene is carried out in tetrahy-drofuran(THF), using n-BuLi as initiator. Kinetic parameters are obtained, which comprise chain propagation rate constant, kp, and partial rate constants, k3 and k4 + k5, propagation orders with respect to monomer and active species concentrations, α and β, real activation energy, E, as well as partial activation energies, E3 and E4+5 and so on. The relationship between the microstruc-ture of polyisoprene and the ratio of [THF]/[n-BuLi] has been investigated. On the basis of the studies mentioned above, a reasonable mechanism of the anionic polymerization of isoprene in THF is proposed.
基金Supported by the National Natural Science Foundation of China(No. 20134010) the Science Research Fund of the Minis-try of Education of P. R. China(No. 104005).
文摘Bifunctional alkoxyamine bis-TIPNO derived from 2,2,5-trimethyl-4-phenyl-3-azahexane-3-oxyl (TIPNO) and α, ω-alkyl bromide by atom transfer radical addition(ATRA) was employed as “biradical initiator” for nitroxide-mediated radical polymerization(NMRP) of isoprene and styrene. The kinetics study for the polymerization of styrene at different time showed living features. The poly(styrene-b-isoprene-b-styrene) (SIS) copolymers have two glass transition temperatures, indicating the immiscibility of the corresponding blocks.
基金supported by the Knowledge Innovation Foundation of Chinese Academy of Sciences (No. KJCX2-YW-N24)
文摘Photooxidation of isoprene leads to the formation of secondary organic aerosol (SOA). In this study, the chemical composition of SOA formed from OH-initiated photooxidation of isoprene has been investigated with gas chromatography/mass spectrometry (GC/MS) and a home-made aerosol time-of-fiight mass spectrometer. Sampling particles generated in a home-made smog chamber. The size distribution of SOA particles was detected by a TSI 3321 aerodynamic particle size spectrometer in real time. Results showed that SOA created by isoprene photooxidation was predominantly in the form of fine particles, which have diameters less than 2.5 μm. The obtained mass spectra of individual particles show that products of the OH-initiated oxidation of isoprene contain methyl vinyl ketone, methacrolein, formaldehyde, and some other hydroxycarbonyls. The possible reaction mechanisms leading to these products were also discussed.