A photonuclear reaction transport model based on an isospin-dependent quantum molecular dynamics model (IQMD) is presented in the intermediate energy region, which is named as GiQMD in this study. Methodology to sim...A photonuclear reaction transport model based on an isospin-dependent quantum molecular dynamics model (IQMD) is presented in the intermediate energy region, which is named as GiQMD in this study. Methodology to simulate the course of the photonuclear reaction within the IQMD frame is described to study the photo- absorption cross section and π meson production, and the simulation results are compared with some available experimental data as well as the Giessen Boltzmann-Uehling-Uhlenbeck model.展开更多
Within the framework of isospin-dependent Boltzmann-Langevin model,the production cross sections of proton-rich nuclei with Z=20-25 are investigated.According to the reaction results for different isospin of projectil...Within the framework of isospin-dependent Boltzmann-Langevin model,the production cross sections of proton-rich nuclei with Z=20-25 are investigated.According to the reaction results for different isospin of projectiles^(48)Ni,^(49)Ni,and^(50)Ni,proton-rich fragments tend to be more easily produced in reactions with the protonrich projectile^(48)Ni.The production cross sections of the unknown nuclei in the vicinity of the projectile are sensitive to incident energy.It is observed that incident energy of 345 MeV/u is appropriate for producing proton-rich nuclei with Z=20-25.In projectile fragmentation reactions based on the radioactive ion beam of48Ni at 345MeV/u,several unknown proton-rich nuclei near the proton drip line are generated in the simulations.All these new nuclei are near-projectile elements near Z=28.The production cross sections of the new nuclei^(34)Ca,37,38Sc,^(38)Ti,^(40,41,42)V,^(40,41)Cr,and^(42,43,44,45)Mn are in the range of 10-2-102mb.Hence,projectile fragmentation of radioactive ion beams of Ni is a potential method for generating new proton-rich nuclei with Z=20-25.展开更多
The isospin fractionations in 124Sn,107Sn+120Sn at 600 MeV/nucleon,and 136Xe,124Xe+208Pb at 1000 MeV/nucleon are investigated by the isospin-dependent quantum molecular dynamics model coupled with the statistical code...The isospin fractionations in 124Sn,107Sn+120Sn at 600 MeV/nucleon,and 136Xe,124Xe+208Pb at 1000 MeV/nucleon are investigated by the isospin-dependent quantum molecular dynamics model coupled with the statistical code GEMINI.The yield ratio as a function of the binding energy difference for light mirror nuclei 3H/3He,7Li/7Be,11B/11C,and 15N/15O is applied to estimate the ratio between neutrons and protons in the gas of the fragmenting system.By comparing the estimated values resulting from the simulations with and without the GEMINI code,it was found that the secondary decay distorts the signal of the isospin fractionation.To minimize the secondary decay effects,the yield ratio of the light mirror nuclei 3H/3He as well as its double ratio between two systems with different isospin asymmetries of the projectiles is recommended as robust isospin observables.展开更多
The isospin effects of projectile fragmentation at intermediate energies are investigated using an isospin-dependent Boltzmann-Langevin model.The collisions of mass-symmetric reactions including 58Fe,58Ni+58Fe,and Ni ...The isospin effects of projectile fragmentation at intermediate energies are investigated using an isospin-dependent Boltzmann-Langevin model.The collisions of mass-symmetric reactions including 58Fe,58Ni+58Fe,and Ni at intermediate energies,in the 30 to 100 MeV/A range,are studied for different symmetry energies.Yield ratios of the isotopic,isobaric,and isotonic pairs of fragments from the intermediate-mass region using three symmetry energies are extracted as functions of the N/Z ratio of the composite systems in the entrance channel and the incident energies.It is found that the yield ratios are sensitive to symmetry energies,especially for neutron-rich systems,and the calculations using soft symmetry energy are closer to the experimental data.The isospin effect is stronger for the soft symmetry energy,owing to the competition of the repulsive Coulomb force and the symmetry energy attractive force on the proton.For the first time,the splits are presented,revealing a transition from the isospin equilibrium at lower energies to translucency at intermediate energies.The results show a degree of transparency in that intermediate mass fragments undergo a transition from dependence on the composite systems in the entrance channel to reliance on the projectile and target nuclei.展开更多
Based on the isospin-dependent Boltzmann-Langevin model,the dynamical fluctuations in the fragmentation reaction of^(112)Sn+^(112)Sn are investigated.The quadrupole moment and octupole moment with zero magnetic quantu...Based on the isospin-dependent Boltzmann-Langevin model,the dynamical fluctuations in the fragmentation reaction of^(112)Sn+^(112)Sn are investigated.The quadrupole moment and octupole moment with zero magnetic quantum number have large fluctuations in the early time of the collisions.The dynamical fluctuations in momentum space show a strong dependence on the incident energy.The effects of using different fluctuations on the fragment cross sections are also studied in the fragmentation reactions.The results by using Q_(20)+Q_(30)fluctuation have a better agreement with the experimental data.Calculations using Q_(20)+Q_(30)fluctuation produce more proton-rich and neutron-rich nuclei than those using Q_(20)fluctuation only.Besides,the difference between the production cross sections of fragments calculated by using Q_(20)and Q_(20)+Q_(30)fluctuations is larger in the vicinity of the projectile.These results present that the dynamical fluctuations may affect the whole dynamical process of fragmentation reactions including the production of fragments,due to the nonlinear nature of the Boltzmann-Langevin equation.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11421505 and 11220101005the National Basic Research Program of China under Grant No 2014CB845401the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB16
文摘A photonuclear reaction transport model based on an isospin-dependent quantum molecular dynamics model (IQMD) is presented in the intermediate energy region, which is named as GiQMD in this study. Methodology to simulate the course of the photonuclear reaction within the IQMD frame is described to study the photo- absorption cross section and π meson production, and the simulation results are compared with some available experimental data as well as the Giessen Boltzmann-Uehling-Uhlenbeck model.
基金Supported by the National Natural Science Foundation of China(No.12135004,No.11635003 and No.11961141004)。
文摘Within the framework of isospin-dependent Boltzmann-Langevin model,the production cross sections of proton-rich nuclei with Z=20-25 are investigated.According to the reaction results for different isospin of projectiles^(48)Ni,^(49)Ni,and^(50)Ni,proton-rich fragments tend to be more easily produced in reactions with the protonrich projectile^(48)Ni.The production cross sections of the unknown nuclei in the vicinity of the projectile are sensitive to incident energy.It is observed that incident energy of 345 MeV/u is appropriate for producing proton-rich nuclei with Z=20-25.In projectile fragmentation reactions based on the radioactive ion beam of48Ni at 345MeV/u,several unknown proton-rich nuclei near the proton drip line are generated in the simulations.All these new nuclei are near-projectile elements near Z=28.The production cross sections of the new nuclei^(34)Ca,37,38Sc,^(38)Ti,^(40,41,42)V,^(40,41)Cr,and^(42,43,44,45)Mn are in the range of 10-2-102mb.Hence,projectile fragmentation of radioactive ion beams of Ni is a potential method for generating new proton-rich nuclei with Z=20-25.
基金the Natural Science Foundation of China under(Nos.U2032137 and U1832182)the Natural Science Foundation of Guangdong Province,China(No.18zxxt65)Fundamental Research Funds for the Central Universities(No.19lgpy306).
文摘The isospin fractionations in 124Sn,107Sn+120Sn at 600 MeV/nucleon,and 136Xe,124Xe+208Pb at 1000 MeV/nucleon are investigated by the isospin-dependent quantum molecular dynamics model coupled with the statistical code GEMINI.The yield ratio as a function of the binding energy difference for light mirror nuclei 3H/3He,7Li/7Be,11B/11C,and 15N/15O is applied to estimate the ratio between neutrons and protons in the gas of the fragmenting system.By comparing the estimated values resulting from the simulations with and without the GEMINI code,it was found that the secondary decay distorts the signal of the isospin fractionation.To minimize the secondary decay effects,the yield ratio of the light mirror nuclei 3H/3He as well as its double ratio between two systems with different isospin asymmetries of the projectiles is recommended as robust isospin observables.
基金Supported by the National Natural Science Foundation of China(11635003,11025524,11161130520)National Basic Research Program of China(2010CB832903)the European Commissions 7th Framework Programme(FP7-PEOPLE-2010-IRSES)under Grant Agreement Project(269131)。
文摘The isospin effects of projectile fragmentation at intermediate energies are investigated using an isospin-dependent Boltzmann-Langevin model.The collisions of mass-symmetric reactions including 58Fe,58Ni+58Fe,and Ni at intermediate energies,in the 30 to 100 MeV/A range,are studied for different symmetry energies.Yield ratios of the isotopic,isobaric,and isotonic pairs of fragments from the intermediate-mass region using three symmetry energies are extracted as functions of the N/Z ratio of the composite systems in the entrance channel and the incident energies.It is found that the yield ratios are sensitive to symmetry energies,especially for neutron-rich systems,and the calculations using soft symmetry energy are closer to the experimental data.The isospin effect is stronger for the soft symmetry energy,owing to the competition of the repulsive Coulomb force and the symmetry energy attractive force on the proton.For the first time,the splits are presented,revealing a transition from the isospin equilibrium at lower energies to translucency at intermediate energies.The results show a degree of transparency in that intermediate mass fragments undergo a transition from dependence on the composite systems in the entrance channel to reliance on the projectile and target nuclei.
基金supported by the National Natural Science Foundation of China under Grants No.12135004,No.11635003 and No.11961141004。
文摘Based on the isospin-dependent Boltzmann-Langevin model,the dynamical fluctuations in the fragmentation reaction of^(112)Sn+^(112)Sn are investigated.The quadrupole moment and octupole moment with zero magnetic quantum number have large fluctuations in the early time of the collisions.The dynamical fluctuations in momentum space show a strong dependence on the incident energy.The effects of using different fluctuations on the fragment cross sections are also studied in the fragmentation reactions.The results by using Q_(20)+Q_(30)fluctuation have a better agreement with the experimental data.Calculations using Q_(20)+Q_(30)fluctuation produce more proton-rich and neutron-rich nuclei than those using Q_(20)fluctuation only.Besides,the difference between the production cross sections of fragments calculated by using Q_(20)and Q_(20)+Q_(30)fluctuations is larger in the vicinity of the projectile.These results present that the dynamical fluctuations may affect the whole dynamical process of fragmentation reactions including the production of fragments,due to the nonlinear nature of the Boltzmann-Langevin equation.