期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Effect of electromigration and isothermal aging on interfacial microstructure and tensile fracture behavior of SAC305/Cu solder joint 被引量:4
1
作者 Wei Guoqiang Liu Henglin +1 位作者 Du Longchun Yao Jian 《China Welding》 EI CAS 2016年第3期42-48,共7页
The Cu/Sn-3. OAg-0.5Cu/Cu butting solder joints were fabricated to investigate the evolution of the interfacial intertnetaUic compound ( IMC ) and the degradation of the tensile strength of solder joints under the e... The Cu/Sn-3. OAg-0.5Cu/Cu butting solder joints were fabricated to investigate the evolution of the interfacial intertnetaUic compound ( IMC ) and the degradation of the tensile strength of solder joints under the effect of electromigration ( EM) and aging processes. Scanning electron microscopy(SEM) results indicated that the Cu6Sn5 interfacial IMC presented obvious asymmetrical growth with the increase of EM time under current density of l. 78 × 10^4 A/cm^2 at 100 ℃ , and the growth of anodic IMC presented a parabolic relationship with time while the cathodic IMC got thinner gradually. However, as for aging samples at 100℃ without current stressing, the Cu6Sn5 IMC presented a symmetrical growth with a slower rate than the anodic IMC of EM samples. The tensile results indicated that the tensile strength of the solder joints under current stress declined more drastic with time than the aging samples, and the fracture mode transformed from ductile fracture to brittle fracture quickly while the fracture mode of aging samples transformed from cup-cone shaped fracture to microporous gathering fracture in a slow way. 展开更多
关键词 ELECTROMIGRATION isothermal aging intermetallic compound mechanical property
下载PDF
Influence of isothermal aging onσprecipitation in super duplex stainless steel 被引量:3
2
作者 Xiao-feng Wang Wei-qing Chen Hong-guang Zheng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第4期435-440,共6页
The time-temperature-transformation (TTT) curve of the 00Cr25Ni7Mo4N duplex stainless steel was obtained with a Formastor-digital thermal dilatometer, and the influence of isothermal aging on o precipitation was stu... The time-temperature-transformation (TTT) curve of the 00Cr25Ni7Mo4N duplex stainless steel was obtained with a Formastor-digital thermal dilatometer, and the influence of isothermal aging on o precipitation was studied by metallographic observation, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results show that the decomposition of ferrite phase is accompanied by the formation of σ phase at 750-1000℃, especially in the range of 800-900℃. The longer the aging time, the higher the amount of o precipi- tation. The area fxaction of various phases remains at a certain value upon the completion of ferrite deformation. The temperature of 850℃ is the most sensitive transaction temperature, the incubation time for the formation of o precipitation is less than 1 min, and aging for 20 min leads to the complete transformation of ferrite. The o phase is formed preferentially at the α/α/γjunction, and then grows along the α/α boundary in the matrix. 展开更多
关键词 super duplex stainless steel isothermal aging PRECIPITATION area fraction
下载PDF
Isothermal Aging Kinetics in CuZnAl Shape Memory Alloy 被引量:2
3
作者 Zengqi ZHAO Lab.of Physics,Baotou Research Institute of Rare Earth,Baotou,014010,ChinaFeixia CHEN Dazhi YANG Dept.of Mater.Eng.,Dalian University of Technology,Dalian,116024,ChinaEr BAO Dept.of Mater.Eng.,Yanshan University,Qinhuangdao,066004,China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1993年第3期172-176,共5页
Isothermal aging behaviours of a CuZnAl shape memory alloy have been investigated by means of dilatometry.The length of the specimens during isothermal aging from 190 to 280℃ increases with the aging time at each tem... Isothermal aging behaviours of a CuZnAl shape memory alloy have been investigated by means of dilatometry.The length of the specimens during isothermal aging from 190 to 280℃ increases with the aging time at each temperature.The isothermal aging kinetics fits in Avrami equation and the time exponent n decreases with the increase in aging temperature.The apparent activation energy for the isothermal aging process was measured to be 109.0kJ/mol,which is about equal to that of a relaxation internal friction peak at about 200℃ (f≈1 Hz) in the alloy. 展开更多
关键词 isothermal aging kinetics CuZnAl alloy shape memory bainitic transformation activation energy
下载PDF
Electrical conductivity changes of bulk tin and Sn-3.0Ag-0.5Cu in bulk and in joints during isothermal aging 被引量:2
4
作者 Bin Liu Fu Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第4期453-458,共6页
The changes of electrical conductivity (resistance) between Sn-3.0Ag-0.5Cu solder joints and printed circuit board (PCB) assembly during aging at 125℃ were investigated by the four-point probe technique. The micr... The changes of electrical conductivity (resistance) between Sn-3.0Ag-0.5Cu solder joints and printed circuit board (PCB) assembly during aging at 125℃ were investigated by the four-point probe technique. The microstructural characterizations of interfacial layers between the solder matrix and the substrate were examined by optical microscopy and scanning electronic microscopy. Different types of specimens were designed to consider several factors. The experimental results indicate that electrical conductivities (resistances) and residual shear strengths of the solder joint specimens significantly decrease after 1000 h during isothermal aging. Microcracks generate in the solder matrix at the first 250 h. Besides, the evolutions of microstructural characterizations at the interface and the matrix of solder joints were noted in this research. 展开更多
关键词 lead-free solder electrical conductivity isothermal aging microcrack thermal stress
下载PDF
Influence of long-term isothermal aging on microstructure and creep rupture properties of Ni-base superalloy M4706 被引量:1
5
作者 DUAN Yu-hao ZHANG Peng +4 位作者 LI Jiao LI Bo SONG Xiao-long GONG Xiu-fang YANG Gong-xian 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期325-333,共9页
After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa ar... After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa are investigated.It is found that as the aging time increases from 0 to 5000 h,the average diameter of coarseγ′increases from 241 to 484 nm,and the distribution of the carbides at grain boundaries changes from discontinuous to continuous.Moreover,experimental observations on the microstructures of all the crept specimens reveal that dislocation bypassing controls the creep deformation.Thus,it is concluded that the transitions in the microstructures result in the degeneration of the creep rupture properties of the experimental alloy with aging time. 展开更多
关键词 Ni-base superalloy isothermal aging MICROSTRUCTURE creep rupture properties
下载PDF
Microstructure and Shear Properties Evolution of Minor Fe-Doped SAC/Cu Substrate Solder Joint under Isothermal Aging
6
作者 Quanzhen Li Chengming Li +5 位作者 Xiaojing Wang Shanshan Cai Jubo Peng Shujin Chen Jiajun Wang Xiaohong Yuan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第7期1279-1290,共12页
Different amounts of Fe(0.005,0.01,0.03,0.05,and 0.07 wt%)were added to SAC305 to study the shear behavior damage of Fe-doped SAC solder joints under thermal loading(170℃,holding time of 0,250,500,and 750 h).The resu... Different amounts of Fe(0.005,0.01,0.03,0.05,and 0.07 wt%)were added to SAC305 to study the shear behavior damage of Fe-doped SAC solder joints under thermal loading(170℃,holding time of 0,250,500,and 750 h).The results show that during isothermal aging at 170℃,the average shear force of all solder joints decreases with increasing aging time,while the average fracture energy first increases and then decreases,reaching a maximum at 500 h.Minor Fe doping could both increase shear forces and related fracture energy,with the optimum Fe doping amount being 0.03 wt%within the entire aging range.This is because the doping Fe reduces the undercooling of the SAC305 alloy,resulting in the microstructure refining of solder joints.This in turn causes the microstructure changing from network structure(SAC305 joint:eutectic network+β-Sn)to a single matrix structure(0.03Fe-doped SAC305 joint:β-Sn matrix+small compound particles).Specifically,Fe atoms can replace some Cu in Cu_(6)Sn_(5)(both inside the solder joint and at the interface),and then form(Cu,Fe)_(6)Sn_(5) compounds,resulting in an increase in the elastic modulus and nanohardness of the compounds.Moreover,the growth of Cu_(6)Sn_(5) and Cu_(3)Sn intermetallic compounds(IMC)layer are inhibited by Fe doping even after the aging time prolonging,and Fe aggregates near the interface compound to form FeSn_(2).This study is of great significance for controlling the growth of interfacial compounds,stabilizing the microstructures,and providing strengthening strategy for solder joint alloy design. 展开更多
关键词 SAC305 solder Fe doping Shear mechanical behavior isothermal aging Interfacial intermetallic compounds(IMC)
原文传递
In-situ isothermal aging TEM analysis of a micro Cu/ENIG/Sn solder joint for flexible interconnects
7
作者 Jinhong Liu Jianhao Xu +2 位作者 Kyung-Wook Paik Peng He Shuye Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第2期42-52,共11页
Sn/ENIG has recently been used in flexible interconnects to form a more stable micron-sized metallurgical joint,due to high power capability which causes solder joints to heat up to 200℃.However,Cu_(6)Sn_(5)which is ... Sn/ENIG has recently been used in flexible interconnects to form a more stable micron-sized metallurgical joint,due to high power capability which causes solder joints to heat up to 200℃.However,Cu_(6)Sn_(5)which is critical for a microelectronic interconnection,will go through a phase transition at temperatures between 186 and 189℃.This research conducted an in-situ TEM study of a micro Cu/ENIG/Sn solder joint under isothermal aging test and proposed a model to illustrate the mechanism of the microstructural evolution.The results showed that part of the Sn solder reacted with Cu diffused from the electrode to formη´-Cu_(6)Sn_(5)during the ultrasonic bonding process,while the rest of Sn was left and enriched in a region in the solder joint.But the enriched Sn quickly diffused to both sides when the temperature reached 100℃,reacting with the ENIG coating and Cu to form(Ni_(x)Cu_(1-x))_(3)Sn_(4),AuSn_(4),and Cu_(6)Sn_(5)IMCs.After entering the heat preservation process,the diffusion of Cu from the electrode to the joint became more intense,resulting in the formation of Cu_(3)Sn.The scallop-type Cu_(6)Sn_(5)and the seahorse-type Cu_(3)Sn constituted a typical two-layered structure in the solder joint.Most importantly,the transition betweenηandη’was captured near the phase transition temperature for Cu_(6)Sn_(5)during both the heating and cooling process,which was accompanied by a volume shifting,and the transition process was further studied.This research is expected to serve as a reference for the service of micro Cu/ENIG/Sn solder joints in the electronic industry. 展开更多
关键词 In-situ TEM observation isothermal aging Micro Cu/ENIG/Sn solder joint Cu_(6)Sn_(5)phase transition
原文传递
Microstructure and shear properties evolution of Mn-doped SAC solder joint under isothermal aging
8
作者 Cheng-ming Li Shu-jin Chen +3 位作者 Shan-shan Cai Ju-bo Peng Xiao-jing Wang Ying-wu Wang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第8期1650-1660,共11页
The effects of Mn addition(0.005,0.01,0.03,0.05,and 0.07 wt.%)on microstructure,shear mechanical behavior,and interfacial thermal stabilities of SAC305 joints were investigated under isothermal aging temperatures of 1... The effects of Mn addition(0.005,0.01,0.03,0.05,and 0.07 wt.%)on microstructure,shear mechanical behavior,and interfacial thermal stabilities of SAC305 joints were investigated under isothermal aging temperatures of 170 C with different aging time(0,250,500,and 750 h).It is found that Mn addition can increase fracture energy of joints without decreasing the shear strength.And the microstructures have transformed from the eutectic net-like structure in SAC305 solder joints into the structures based onβ-Sn matrix with intermetallic compounds(IMCs)distributed.By doping 0.07 wt.%Mn,the Cu_(6)Sn_(5) growth along the SAC305/Cu interface during thermal aging can be inhibited to some extent.During isothermal aging at 170°C,the maximum shear force of solder joint decreases continuously with aging time increasing,while the fracture energy rises first and then decreases,reaching the maximum at 500 h compared by that with the microstructure homogenization.Cu_(3)Sn growth between Cu_(3)Sn_(5)/Cu interface has been retarded most at the aging time of 250 h with 0.07 wt.%Mn-doped joints.With the aging time prolonging,the inhibition effect of Mn on CusSn IMC layer becomes worse.The strengthening effect of Mn can be explained by precipitation strengthening,and its mechanical behavior can be predicted by particle strengthening model proposed by Orowan. 展开更多
关键词 SAC305 solder Mn doping Shear mechanical behavior isothermal aging Interfacial intermetallic compound
原文传递
Microstructures and mechanical properties of homogenization and isothermal aging Mg–Gd–Er–Zn–Zr alloy 被引量:2
9
作者 Kai Wen Wen-Bo Du +2 位作者 Ke Liu Zhao-Hui Wang Shu-Bo Li 《Rare Metals》 SCIE EI CAS CSCD 2016年第6期443-449,共7页
The effects of homogenization and isothermal aging treatment on the mechanical properties of Mg-12Gd- 2Er-1Zn-0.6Zr (wt%) alloy were investigated. The precipitated long-period stacking order (LPSO) structure and t... The effects of homogenization and isothermal aging treatment on the mechanical properties of Mg-12Gd- 2Er-1Zn-0.6Zr (wt%) alloy were investigated. The precipitated long-period stacking order (LPSO) structure and the aging precipitation sequence of the conditioned alloys were observed and analyzed, respectively. The results indicate that the 14H-LPSO structure occurs after the homogenization treatment and the 131 phase forms after the isothermal aging process. These two independent processes could be controlled by the precipitation temperature range. The significant increase in the elongation of the as-cast alloy after homogenization treatment is attributed to the disappearance of the coarse primary Mgs(Gd, Er, Zn) phase and the presence of the 14H-LPSO structure. The precipitation sequence of the investigated alloy is α-Mg(SSS)/β″(D019)/β′(cbco)/β. Furthermore, the yield tensile strength (YTS) and ultimate tensile strength (UTS) values of the isothermal aging alloy have a great improvement, which could be attributed to the high density of the precipitated β′ phase. 展开更多
关键词 Magnesium alloys isothermal aging Mechanical properties Mg-Gd-Er-Zn(Zr) Microstructures
原文传递
Precipitates in an isothermally aged Fe-18Cr-12Mn-0.04C-0.48N high-nitrogen austenitic stainless steel 被引量:1
10
作者 SHI Feng,WANG Lijun,CUI Wenfang,REN Yuping,LI Hongxiao,and LIU Chunming School of Materials & Metallurgy,Northeastern University,Shenyang 110004,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期185-190,共6页
Vertical section of Fe-18Cr-12Mn-0.04C-N system phase diagram varying with nitrogen content at 1×105 Pa was calculated using Thermo-Calc software and thermodynamic database.The morphology and crystallography info... Vertical section of Fe-18Cr-12Mn-0.04C-N system phase diagram varying with nitrogen content at 1×105 Pa was calculated using Thermo-Calc software and thermodynamic database.The morphology and crystallography information of precipitates in Fe-18Cr-12Mn-0.04C-0.48N high-nitrogen austenitic stainless steel during isothermal aging at 800 ℃ after austenization was investigated using optical microscopy(OM),and transmission electron microscopy(TEM) with energy distribution spectrum(EDS).The experimental results show that three precipitates,(Cr,Fe,Mn)2(N,C),(Cr,Fe,Mn)23(C,N)6 and σ phase exist in this steel,which is consistent with the thermodynamic calculation,indicating that thermodynamic calculation can provide instructions for alloy composition design,heat treatment and prediction of precipitation sequence in Fe-18Cr-12Mn-0.04C-N system. 展开更多
关键词 PRECIPITATE isothermal aging thermodynamic calculation phase diagram high nitrogen austenitic stainless steel
下载PDF
Optimizing temperature coefficient of Sm_(2)Co_(17)-type magnets through adjusting the isothermal aging process
11
作者 Chao Wang Die Hu +8 位作者 Qiangfeng Li Yikun Fang Meng Zheng Lei Wang Hongsheng Chen Lei Zhao Haizhou Wang Minggang Zhu Wei Li 《Journal of Rare Earths》 SCIE EI CAS 2024年第11期2097-2104,I0004,共9页
The high-temperature magnetic perfo rmance and micro structure of Sm_(1-x)Gd_(x)(Co_(bal)Fe_(0.09)Cu_(0.09)Zr_(0.025))_(7.2)(x=0.3,0.5) magnets were investigated.With the isothermal aging time decreasing from 11 to 3 ... The high-temperature magnetic perfo rmance and micro structure of Sm_(1-x)Gd_(x)(Co_(bal)Fe_(0.09)Cu_(0.09)Zr_(0.025))_(7.2)(x=0.3,0.5) magnets were investigated.With the isothermal aging time decreasing from 11 to 3 h,the temperature coefficient of intrinsic coercivity in the temperature range of 25-500℃,β_(25-500℃),was optimized from -0,167%/℃ to-0.112%/℃ for x=0.3 magnets.The noticeable enhancement(~33%) of temperature stability is correlated with the increased content of 1:5H cell boundary phase and its relatively high Curie temperature as well.However,for the x=0.5 magnet,it is found that the presence of Sm_(5)Co_(19) phases and wider nanotwin variants hinder the formation of 1:5H cell boundary phase.The insufficient 1:5H is not beneficial to the proper redistribution of Cu in cell boundary,making the x=0.5 magnet difficult to achieve higher temperature stability.Consequently,the approach of adjusting the isothermal aging process can offer guidance for attaining superior magnetic performance in the temperature range from 25 to 500℃ for Gd-substituted Sm_(2)Co_(17)-type magnets. 展开更多
关键词 Rare earths Sm_(2)Co_(17)-type magnets isothermal aging process Temperature coefficient of intrinsic coercivity
原文传递
Effects of nano-sized Ag reinforcing particulates on the microstructure of Sn-0.7Cu solder joints 被引量:4
12
作者 Feng Tai Fu Guo Zhi-dong Xia Yong-ping Lei Yao-wu Shi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第6期677-684,共8页
Composite solders were prepared by mechanically dispersing different volumes of nano-sized Ag particles into the Sn-0.7Cu eutectic solder. The effects of Ag particle addition on the microstructure of Sn-0.7Cu solder j... Composite solders were prepared by mechanically dispersing different volumes of nano-sized Ag particles into the Sn-0.7Cu eutectic solder. The effects of Ag particle addition on the microstructure of Sn-0.7Cu solder joints were investigated. Besides, the effects of isothermal aging on the microstructural evolution in the interfacial intermetallic compound (IMC) layer of the Sn-0.7Cu solder and the composite solder reinforced with 1vol% Ag particles were analyzed, respectively. Experimental results indicate that the growth rate of the interfacial IMC layer in the Ag particles reinforced composite solder joint is much lower than that in the Sn-0.7Cu solder joint during isothermal aging. The Ag particles reinforced composite solder joint exhibits much lower layer-growth coefficient for the growth of the IMC layer than the corresponding solder joint. 展开更多
关键词 lead-free solder composite solder intermetallic compounds MICROSTRUCTURE isothermal aging
下载PDF
Thermal reliabilities of Sn−0.5Ag−0.7Cu−0.1Al_(2)O_(3)/Cu solder joint 被引量:1
13
作者 Jie WU Guo-qiang HUANG +2 位作者 Song-bai XUE Peng XUE Yong XU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第10期3312-3320,共9页
The effects of trace addition of Al_(2)O_(3) nanoparticles(NPs)on thermal reliabilities of Sn−0.5Ag−0.7Cu/Cu solder joints were investigated.Experimental results showed that trace addition of Al_(2)O_(3) NPs could inc... The effects of trace addition of Al_(2)O_(3) nanoparticles(NPs)on thermal reliabilities of Sn−0.5Ag−0.7Cu/Cu solder joints were investigated.Experimental results showed that trace addition of Al_(2)O_(3) NPs could increase the isotheraml aging(IA)and thermal cyclic(TC)lifetimes of Sn−0.5Ag−0.7Cu/Cu joint from 662 to 787 h,and from 1597 to 1824 cycles,respectively.Also,trace addition of Al_(2)O_(3) NPs could slow down the shear force reduction of solder joint during thermal services,which was attributed to the pinning effect of Al_(2)O_(3) NPs on hindering the growth of grains and interfacial intermetallic compounds(IMCs).Theoretically,the growth coefficients of interfacial IMCs in IA process were calculated to be decreased from 1.61×10^(−10 )to 0.79×10^(−10) cm^(2)/h in IA process,and from 0.92×10^(−10) to 0.53×10^(−10) cm^(2)/h in TC process.This indicated that trace addition of Al_(2)O_(3) NPs can improve both IA and TC reliabilities of Sn−0.5Ag−0.7Cu/Cu joint,and a little more obvious in IA reliability. 展开更多
关键词 Sn−0.5Ag−0.7Cu solder Al_(2)O_(3) nanoparticles isothermal aging thermal cycling thermal reliability
下载PDF
A simple method of synthesizing multi-wall carbon nanotubes/SnO core/shell nanostructure
14
作者 SUN Xue1),CHU Yi2),WANG Dawei3),DU Jinhong3),ZHANG Baoyou2),and WANG Fuping1)1) School of Science,Harbin Institute of Technology,Harbin 150001,China 2) School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China 3) Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期191-194,共4页
Multi-wall carbon nanotubes(MWNTs)/SnO core/shell nanosturcture was synthesized by a simple solution-based method,in which SnCl2 was solved in distilled water containing dispersed MWNTs,then stired,filtered and washed... Multi-wall carbon nanotubes(MWNTs)/SnO core/shell nanosturcture was synthesized by a simple solution-based method,in which SnCl2 was solved in distilled water containing dispersed MWNTs,then stired,filtered and washed in ambient atmosphere,finally dryed in air at 90 ℃ for 6 h.The MWNTs/SnO core/shell nanostructure was characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM).It is found that surface defects of MWNTs are necessary for the deposition of SnO.The mechanism of the SnO nanocoating formation through the hydrolysis of SnCl2 in water(4SnCl_2+2H_2O-Sn_4(OH)2Cl_6+2HCl) was presented. 展开更多
关键词 PRECIPITATE isothermal aging thermodynamic calculation phase diagram high nitrogen austenitic stainless steel
下载PDF
Influence of External Interface Normal Stress on the Growth of Cu-Sn IMC During Aging
15
作者 Changchang Wang Yinbo Chen Zhi-Quan Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2020年第10期1388-1396,共9页
A U-shape clamp was designed to apply stress perpendicular to the interface of Cu/Sn/Cu solder joints,and its influence on the growth behavior of Cu-Sn intermetallic compound(IMC)during thermal aging at 150℃ was inve... A U-shape clamp was designed to apply stress perpendicular to the interface of Cu/Sn/Cu solder joints,and its influence on the growth behavior of Cu-Sn intermetallic compound(IMC)during thermal aging at 150℃ was investigated.The results show that compared with the sample at general stress-free state,the growth rate of IMC under compression is faster,while that under tension is slower.Moreover,the interface between IMC and Sn is smoother under compressive stress,and the corresponding IMC grains are smaller and more uniform than that under tensile stress.According to the growth kinetic analysis,the growth of IMC under general,compressive and tensile states is all controlled by the combination of grain boundary diffusion and volume diffusion with a similar growth exponent(n≈0.4).However,external stress can affect the Ostwald ripening process of grain growth,causing a change of grain size and grain boundary density in the IMC layer.As a result,the IMC growth behavior at the interface of the solder joint will be affected by the applied external normal stress. 展开更多
关键词 Cu-Sn IMC Growth behavior External stress effect isothermal aging
原文传递
Precipitation Kinetics of Cr_2N in High Nitrogen Austenitic Stainless Steel 被引量:10
16
作者 SHI Feng WANG Li-jun CUI Wen-fang LIU Chun-ming 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2008年第6期72-77,共6页
The precipitation behavior of Cr2 N during isothermal aging in the temperature range from 700 ℃ to 950 ℃ in Fe-18Cr-12Mn-0.48N (in mass percent) high nitrogen austenitic stainless steel, including morphology and c... The precipitation behavior of Cr2 N during isothermal aging in the temperature range from 700 ℃ to 950 ℃ in Fe-18Cr-12Mn-0.48N (in mass percent) high nitrogen austenitic stainless steel, including morphology and content of precipitate, was investigated using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The isothermal precipitation kinetics curve of Cr2 N and the corresponding precipitation activation energy were obtained. The results show that Cr2N phase precipitates in a cellular way and its morphology is transformed from initial granular precipitates to lamellar ones in the cell with increasing aging time. The nose temperature of Cr2 N precipitation is about 800 ℃, with a corresponding incubation period of 30 min, and the ceiling temperature of Cr2N precipitation is 950℃. The diffusionactivation energy of Cr2 N precipitation is 296 kJ/mol. 展开更多
关键词 high nitrogen austenitic stainless steel isothermal aging precipitation kinetics precipitation activation energy
原文传递
Effects of Mo on the Precipitation Behaviors in High-Nitrogen Austenitic Stainless Steels 被引量:7
17
作者 Feng Shi Yang Qi Chunming Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第12期1125-1130,共6页
Precipitation behaviors of Fe-18Cr-18Mn-0.63N and Fe-18Cr-18Mn-2Mo-0.69N high-nitrogen austenitic stainless steels during isothermally aging at 850℃ have been investigated by optical microscopy (OM), scan- ning ele... Precipitation behaviors of Fe-18Cr-18Mn-0.63N and Fe-18Cr-18Mn-2Mo-0.69N high-nitrogen austenitic stainless steels during isothermally aging at 850℃ have been investigated by optical microscopy (OM), scan- ning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The experimental results show that precipitation displays a discontinuous cellular way and the precipitates are identified as Cr2N in Fe-18Cr-18Mn-0.63N steel. The addition of Mo makes precipitation occur not only at the grain boundary but also inside the grain and precipitation also displays discontinuous cellular way. The precipitates at the grain boundary and in the cell are both identified as Cr2N phase and X phase and the precipitates inside the grain are identified as X phase in Fe-18Cr-18Mn-2Mo-0.69N steel. The nucleations of X phase and Cr2N phase at the grain boundary are both governed by the diffusion of Cr atoms. The formation and growth of X phase inside the grain are induced by the impoverishment of N atoms with increasing aging time. 展开更多
关键词 Austenitic stainless steel High nitrogen isothermal aging PRECIPITATION
原文传递
Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions 被引量:3
18
作者 Li Liu Jian-Tang Jiang +3 位作者 Xiang-Yuan Cui Bo Zhang Liang Zhen Simon P.Ringer 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第4期61-72,共12页
Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions during isothermal ageing were investigated by microhardness measurements,transmission electron microscopy,atom p... Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions during isothermal ageing were investigated by microhardness measurements,transmission electron microscopy,atom probe tomography and density functional theory-based simulations.The results demonstrate that the Er additions significantly improve the hardness during elevated temperature ageing,especially at 400℃.This is mainly because Er additions increase the nucleation rate of the Al_(3)(Er,Sc,Zr)precipitates,resulting in a higher density of fine and uniform dispersion of L1_(2)structured nanoparticles.First-principles calculations demonstrate that the second nearest neighboring solute-solute interactions for the species Sc,Zr and Er are energetically favored–a key feature to rationalize the observed precipitate structure and the underlying formation mechanism.The sequential formation of the core/shell precipitates in the Er-free alloy and core/double-shell precipitates in the Er-containing alloy arises due to the different solute-solute and solute-vacancy interaction energies,and the relative diffusivities of the Er,Sc and Zr species in Al.These results shed light on the beneficial effects of Er additions on the agehardening behavior of Al-Sc-Zr alloy and provide guidance for designing the ageing treatments for the Al-Sc-Zr(-Er)alloys. 展开更多
关键词 Al alloys isothermal ageing MICROHARDNESS Transmission electron microscopy Atom probe tomography First-principles calculations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部