Climatology of the isothermal layer depth (ILD) and the mixed layer depth (MLD) has been produced from in-situ temperaturesalinity observations in the East China Sea (ECS) since 1925. The methods applied on the ...Climatology of the isothermal layer depth (ILD) and the mixed layer depth (MLD) has been produced from in-situ temperaturesalinity observations in the East China Sea (ECS) since 1925. The methods applied on the global are used to compute the ILD and the MLD in the ECS with a temperature criterion AT=0. 8 ℃ for the ILD, and a density criterion with a threshold △σθ corresponding to fixed △T=0. 8 ℃ for the MLD, respectively. With the derived climatology ILD and MLD, the monthly variations of the barrier layer (BL) and the compensation layer (CL) in the ECS are analyzed. The BL mainly exists in the shallow water region of the ECS during April-June with thickness larger than 15 m. From December to next March, the area along the shelf break from northeast of Taiwan Island to the northeast ECS is characterized by the CL. Two kinds of main temperature - salinity structures of the CL in this area are given.展开更多
Adsorption of 2, 4, 6-trichlorophenol(TCP) onto the calcined Mg/Al-CO_3 layered double hydroxide(CLDH) was investigated. The prepared Mg/Al-CO_3 layered double hydroxide(LDH) and CLDH were characterized by powde...Adsorption of 2, 4, 6-trichlorophenol(TCP) onto the calcined Mg/Al-CO_3 layered double hydroxide(CLDH) was investigated. The prepared Mg/Al-CO_3 layered double hydroxide(LDH) and CLDH were characterized by powder X-ray diffraction(XRD) and thermo gravimetric analyzer-differential scanning calorimeters(TG-DSC). Moreover, 2,4,6-trichlorophenol(TCP) was removed effectively(94.7% of removal percentage in 9h) under the optimized experimental conditions. The adsorption kinetics data fitted the pseudosecond-order model well. The Freundlich, Langmuir, and Tempkin adsorption models were applied to the experimental equilibrium adsorption data at different temperatures of solution. The adsorption data fitted the Freundlieh adsorption isotherm with good values of the correlation coefficient. A mechanism of the adsorption process is proposed according to the intraparticle diffusion model, which indicates that the overall rate of adsorption can be described as three steps.展开更多
We have estimated the DBML(depth to the bottom of the magnetic layer) in South America from the inversion of magnetic anomaly data extracted from the EMAG2 grid. The results show that the DBML values, interpreted as...We have estimated the DBML(depth to the bottom of the magnetic layer) in South America from the inversion of magnetic anomaly data extracted from the EMAG2 grid. The results show that the DBML values, interpreted as the Curie isotherm, vary between -10 and -60 km. The deepest values(〉-45) are mainly observed forming two anomalous zones in the central part of the Andes Cordillera. To the east of the Andes, in most of the stable cratonic area of South America, intermediate values(between -25 and-45 km) are predominant. The shallowest values(〈-25 km) are present in northwestern corner of South America, southern Patagonia, and in a few sectors to the east of the Andes Cordillera. Based on these results, we estimated the heat flow variations along the study area and found a very good correlation with the DBML. Also striking is the observation that the thermal anomalies of low heat flow are closely related to segments of flat subduction, where the presence of a cold and thick subducting oceanic slab beneath the continent, with a virtual absence of hot mantle wedge, leads to a decrease in the heat transfer from the deeper parts of the system.After comparing our results with the Moho depths reported by other authors, we have found that the Curie isotherm is deeper than Moho in most of the South American Platform(northward to -20°S), which is located in the stable cratonic area at the east of the Andes. This is evidence that the lithospheric mantle here is magnetic and contributes to the long wavelength magnetic signal. Also, our results support the hypothesis that the Curie isotherm may be acting as a boundary above which most of the crustal seismicity is concentrated. Below this boundary the occurrence of seismic events decreases dramatically.展开更多
基金The National Natural Science Foundation of China under contract Nos40776018 and 40730842the National Basic Research Program of China under contract No.2007CB816002
文摘Climatology of the isothermal layer depth (ILD) and the mixed layer depth (MLD) has been produced from in-situ temperaturesalinity observations in the East China Sea (ECS) since 1925. The methods applied on the global are used to compute the ILD and the MLD in the ECS with a temperature criterion AT=0. 8 ℃ for the ILD, and a density criterion with a threshold △σθ corresponding to fixed △T=0. 8 ℃ for the MLD, respectively. With the derived climatology ILD and MLD, the monthly variations of the barrier layer (BL) and the compensation layer (CL) in the ECS are analyzed. The BL mainly exists in the shallow water region of the ECS during April-June with thickness larger than 15 m. From December to next March, the area along the shelf break from northeast of Taiwan Island to the northeast ECS is characterized by the CL. Two kinds of main temperature - salinity structures of the CL in this area are given.
基金Funded by the National Natural Science Foundation of China(No.21476269)
文摘Adsorption of 2, 4, 6-trichlorophenol(TCP) onto the calcined Mg/Al-CO_3 layered double hydroxide(CLDH) was investigated. The prepared Mg/Al-CO_3 layered double hydroxide(LDH) and CLDH were characterized by powder X-ray diffraction(XRD) and thermo gravimetric analyzer-differential scanning calorimeters(TG-DSC). Moreover, 2,4,6-trichlorophenol(TCP) was removed effectively(94.7% of removal percentage in 9h) under the optimized experimental conditions. The adsorption kinetics data fitted the pseudosecond-order model well. The Freundlich, Langmuir, and Tempkin adsorption models were applied to the experimental equilibrium adsorption data at different temperatures of solution. The adsorption data fitted the Freundlieh adsorption isotherm with good values of the correlation coefficient. A mechanism of the adsorption process is proposed according to the intraparticle diffusion model, which indicates that the overall rate of adsorption can be described as three steps.
文摘We have estimated the DBML(depth to the bottom of the magnetic layer) in South America from the inversion of magnetic anomaly data extracted from the EMAG2 grid. The results show that the DBML values, interpreted as the Curie isotherm, vary between -10 and -60 km. The deepest values(〉-45) are mainly observed forming two anomalous zones in the central part of the Andes Cordillera. To the east of the Andes, in most of the stable cratonic area of South America, intermediate values(between -25 and-45 km) are predominant. The shallowest values(〈-25 km) are present in northwestern corner of South America, southern Patagonia, and in a few sectors to the east of the Andes Cordillera. Based on these results, we estimated the heat flow variations along the study area and found a very good correlation with the DBML. Also striking is the observation that the thermal anomalies of low heat flow are closely related to segments of flat subduction, where the presence of a cold and thick subducting oceanic slab beneath the continent, with a virtual absence of hot mantle wedge, leads to a decrease in the heat transfer from the deeper parts of the system.After comparing our results with the Moho depths reported by other authors, we have found that the Curie isotherm is deeper than Moho in most of the South American Platform(northward to -20°S), which is located in the stable cratonic area at the east of the Andes. This is evidence that the lithospheric mantle here is magnetic and contributes to the long wavelength magnetic signal. Also, our results support the hypothesis that the Curie isotherm may be acting as a boundary above which most of the crustal seismicity is concentrated. Below this boundary the occurrence of seismic events decreases dramatically.