This paper investigates the distribution of intercarrier interference (ICI) in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems based on the geometrical one-ring model....This paper investigates the distribution of intercarrier interference (ICI) in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems based on the geometrical one-ring model. Using the spatial and temporal correlation of a geometrical one-ring model, a close-formed expression of intercarrier interference due to the Doppler effect caused by the movement of receiver is derived under the isotropic scattering conditions and non-isotropic scattering conditions. The analytical results are verified by Monte Carlo simulations. We use the generated channels to investigate MIMO-OFDM intercarrier interference under various channel parameters. It can be shown that more than 95% oflCI power comes from five neighboring subcarriers.展开更多
文摘This paper investigates the distribution of intercarrier interference (ICI) in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems based on the geometrical one-ring model. Using the spatial and temporal correlation of a geometrical one-ring model, a close-formed expression of intercarrier interference due to the Doppler effect caused by the movement of receiver is derived under the isotropic scattering conditions and non-isotropic scattering conditions. The analytical results are verified by Monte Carlo simulations. We use the generated channels to investigate MIMO-OFDM intercarrier interference under various channel parameters. It can be shown that more than 95% oflCI power comes from five neighboring subcarriers.