The article deals with an economic order quantity (EOQ) inventory model for deteriorating items in which the supplier provides the purchaser a permissible delay in payment. This is so when deterioration of units in th...The article deals with an economic order quantity (EOQ) inventory model for deteriorating items in which the supplier provides the purchaser a permissible delay in payment. This is so when deterioration of units in the inventory is subject to constant deterioration rate, demand rate is quadratic function of time and salvage value is associated with the deteriorated units. Shortages in the system are not allowed to occur. A mathematical formulation is developed when the supplier offers a permissible delay period to the customers under two circumstances: 1) when delay period is less than the cycle of time;and 2) when delay period is greater than the cycle of time. The method is suitable for the items like state-of-the-art aircrafts, super computers, laptops, android mobiles, seasonal items and machines and their spare parts. A solution procedure algorithm is given for finding the optimal order quantity which minimizes the total cost of an inventory system. The article includes numerical examples to support the effectiveness of the developed model. Finally, sensitivity analysis on some parameters on optimal solution is provided.展开更多
The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. Th...The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. The two-phased demand function states the constant function for a certain period and the quadratic function of time for the rest part of the cycle time. No shortages as well as partial backlogging are allowed to occur. The mathematical expressions are derived for determining the optimal cycle time, order quantity and total cost function. An easy-to-use working procedure is provided to calculate the above quantities. A couple of numerical examples are cited to explain the theoretical results and sensitivity analysis of some selected examples is carried out.展开更多
文摘The article deals with an economic order quantity (EOQ) inventory model for deteriorating items in which the supplier provides the purchaser a permissible delay in payment. This is so when deterioration of units in the inventory is subject to constant deterioration rate, demand rate is quadratic function of time and salvage value is associated with the deteriorated units. Shortages in the system are not allowed to occur. A mathematical formulation is developed when the supplier offers a permissible delay period to the customers under two circumstances: 1) when delay period is less than the cycle of time;and 2) when delay period is greater than the cycle of time. The method is suitable for the items like state-of-the-art aircrafts, super computers, laptops, android mobiles, seasonal items and machines and their spare parts. A solution procedure algorithm is given for finding the optimal order quantity which minimizes the total cost of an inventory system. The article includes numerical examples to support the effectiveness of the developed model. Finally, sensitivity analysis on some parameters on optimal solution is provided.
文摘The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. The two-phased demand function states the constant function for a certain period and the quadratic function of time for the rest part of the cycle time. No shortages as well as partial backlogging are allowed to occur. The mathematical expressions are derived for determining the optimal cycle time, order quantity and total cost function. An easy-to-use working procedure is provided to calculate the above quantities. A couple of numerical examples are cited to explain the theoretical results and sensitivity analysis of some selected examples is carried out.